Thermodynamique, Ondes, Numérique, Interfaces, Combustion

Effets thermiques dans les systèmes en rotation

Ondes et interfaces immergées

Modélisation des écoulements multiphasiques réactifs

Modélisation et simulation de la propagation des feux de forêts

Thermodynamique des mélanges

Thermodynamique, Ondes Numérique, Interfaces, Combustion

L’équipe TONIC (Thermodynamique, Ondes, Numérique, Interfaces et Combustion) développe une activité de modélisation de phénomènes fortement multi-échelles. Elle couvre notamment les écoulements multiphasiques et/ou réactifs, depuis l’échelle de l’injecteur isolé (quelques mm) à l’échelle du feu de forêt pleinement développé (plusieurs hectares). 
Des méthodes numériques adaptées sont développées en parallèle, notamment pour l’imagerie des sols (détection de nappes par analyse acoustique), ou encore pour la modélisation des transferts radiatifs.

En parallèle à ces développements à caractère très multi-échelle, des travaux analytiques sont menés en appui à la construction de modèles. Un important effort de recherche est accordé à la modélisation de la thermodynamique des mélanges multiphasiques (calculs d’équilibre thermochimique, fermetures thermodynamiques complexes), ou encore au développement de modèles cinétiques réduits pour la combustion.


  • Chargé de Recherche CNRS - HDR
    équipe Thermodynamique Ondes Numérique Interfaces Combustion
x >

Annuaire personnel permanent

  • Chargé de Recherche CNRS - HDR
    équipe Thermodynamique Ondes Numérique Interfaces Combustion
  • Professeur Centrale Marseille
    équipe Thermodynamiques, Ondes, Numérique, Interfaces et Combustion
  • Maître de Conférences AMU
    équipe Thermodynamiques, Ondes, Numérique, Interfaces et Combustion
  • Professeur des Universités AMU
    équipe Thermodynamiques, Ondes, Numérique, Interfaces et Combustion
  • Professeur émérite AMU
    équipe Thermodynamique Ondes Numérique Interfaces Combustion
  • Directeur de Recherche CNRS
    équipe Thermodynamiques, Ondes, Numérique, Interfaces et Combustion
  • Chargée de Recherche CNRS
    équipe Thermodynamiques, Ondes, Numérique, Interfaces et Combustion
  • Maître de Conférences AMU - HDR
    équipe Thermodynamiques, Ondes, Numérique, Interfaces et Combustion
  • Ingénieur de Recherche CDI de mission
    équipe Thermodynamiques, Ondes, Numérique, Interfaces et Combustion
x >

Doctorants, Post-Doctorants et CDD

x >

Dernières publications de l'équipe

  • Mostafa Taha, Song Zhao, Aymeric Lamorlette, Jean-Louis Consalvi, Pierre Boivin. Lattice-Boltzmann modeling of buoyancy-driven turbulent flows. Physics of Fluids, American Institute of Physics, 2022, ⟨10.1063/5.0088409⟩. ⟨hal-03661928⟩ Plus de détails...
  • Karthik Bhairapurada, Bruno Denet, Pierre Boivin. A Lattice-Boltzmann study of premixed flames thermo-acoustic instabilities. Combustion and Flame, Elsevier, 2022, 240, pp.112049. ⟨hal-03582162⟩ Plus de détails...
  • Housseyn Smahi, Djilali Ameur, Joanna Dib, Isabelle Raspo. On the modeling and simulation of coupled adsorption and thermosolutal convection in supercritical carbon dioxide. Journal of Engineering and Applied Science, 2022, 69 (1), pp.5. ⟨10.1186/s44147-021-00054-4⟩. ⟨hal-03567395⟩ Plus de détails...
  • Nicolas Godinaud, Pierre Boivin, Pierre Freton, Jean-Jacques Gonzalez, Frédéric Camy-Peyret. Development of a new OpenFOAM solver for plasma cutting modelling. Computers and Fluids, Elsevier, In press, ⟨10.1016/j.compfluid.2022.105479⟩. ⟨hal-03661919⟩ Plus de détails...
  • Guanxiong Wang, Song Zhao, Pierre Boivin, Eric Serre, Pierre Sagaut. A new hybrid Lattice-Boltzmann method for thermal flow simulations in low-Mach number approximation. Physics of Fluids, American Institute of Physics, In press. ⟨hal-03636905⟩ Plus de détails...
x >

Dernières rencontres scientifiques

Soutenances de thèses et HDR

15 Mars 2022 - Influence of Radiative Effects on Buoyancy-induced Flows in High-pressure Compressor Inter-disk Cavities / PhD defense Ahmed HODAIB
Doctorant : Ahmed HODAIB 

Date de soutenance : le 15 mars 2022 à 15h00 ; Amphi 3 Centrale Marseille

Abstract  : In aircraft engines, a secondary air flow is obtained from an intermediate compressor stage, to be used to cool the turbine disks. This flow passes through the high-pressure compressor inter-disk cavities (Farthing et al., ASME J. Turbomach., 1992). A better understanding of this complex buoyancy-induced flow is essential to determine the thermal stresses, the radial growth of the blades, due to thermal expansion, and the temperature rise of the air used for cooling. Besides, to be able to determine the optimum clearance between the rotating blades and the surrounding casing, in order to improve the engine performance. This convective flow is not only unsteady and three-dimensional, it is unstable. Due to high temperature differences, the flow and heat transfer give rise to a strongly conjugate problem: the flow is affected by the temperature of the disks, and vice versa (Owen & Long, ASME J. Turbomach., 2015). The compressible Navier-Stokes equations, coupled with the energy equation and perfect gas law, are solved in the framework of the Low Mach Number (LMN) approximation, allowing a reduction of computational costs by filtering the high-speed waves while keeping a good accuracy by considering the compressibility effects (Motheau & Abraham, J. Comput. Phys., 2016). A fourth-order compact spatial discretisation scheme combined with parallelised Fourier method is implemented on a staggered grid. A second-order semi-implicit scheme is introduced for time integration. A two-step algorithm is developed for the solution of the LMN equations. In a first step, the thermodynamic variables are calculated through an iterative process, and used to compute the velocity divergence. In a second step, the variable density continuity and momentum equations are solved using a projection-type method. A parallelized iterative domain decomposition technique is implemented for the simulation of the three-dimensional flow and heat transfer in a T-shape model cavity. The parallelisation of the resulting computational code is performed through a hybrid MPI/OpenMP approach. Spatial and temporal accuracies of the proposed algorithm are checked on a manufactured solution in a simplified configuration. Then, the algorithm is applied to study the flow and heat transfer in an idealised compressor inter-disk cavity, while considering conduction inside the walls, to allow for a more accurate thermal balance. The results are compared with data available in the literature based on local Nusselt numbers. A parametric study is done for a range of the two main parameters governing the flow, according to Farthing et al. (ASME J. Turbomach., vol. 114, pp. 229-236 and pp. 237-246, 1992): the temperature difference and the Rossby number. To include surface radiation exchanges, the discrete radiative heat transfer equation is solved based on the zonal method. The adequacy of the proposed Low Mach number approach is shown, compared to Boussinesq approximation. Moreover, the validity of neglecting the gravitational acceleration with respect to the centrifugal acceleration in the equations is discussed. Then, the definition of an effective Rayleigh number is established, where both centrifugal and gravitational accelerations are taken into account in the buoyancy terms. The results reveal that the flow exhibits a Poiseuille-Rayleigh-Bénard-like instability, and that this effective Rayleigh number governs the flow structure and the heat transfer in the whole cavity, and hence the stability of the flow. In the end, it is shown that radiative exchanges become more significant the more we get closer to the inner radius of the cavity, in agreement with the results reported by Tang & Owen (ASME J. Turbomach., 2021). It is observed that the temperature profiles at the upstream and downstream disks approach each other, when radiation is considered, where the upstream disk temperatures increase. 

Directeur de these M. Anthony RANDRIAMAMPIANINA Aix Marseille Université 
Rapporteur M. Gary D. LOCK University of Bath, UK
Rapporteur M. Artur TYLISZCZAK Czestochowa University of Technology, Poland
Président  M. Pierre SAGAUT Aix-Marseille Université
Examinateur M. Innocent MUTABAZI Normandie Université
Examinateur M. Stéphane ABIDE Université de Perpignan Via Domitia
CoDirecteur de these Mme Isabelle RASPO Aix-Marseille Université
CoDirecteur de these M. Stéphane VIAZZO Aix-Marseille-Université
4 Février 2022 - Lattice-Boltzmann methods for compressible flows / PhD defense Gabriel Farag
Doctorant : Fabriel FARAG

Date de soutenance : le 4 février 2022 à 14h00 ; Amphi 3 Centrale Marseille

Abstract  : Since the late 1970's, computational fluid dynamics solvers became essentials due to increasingly complex applications requiring fluid solutions. The small scales necessary for industrial applications often need a very fine grid or very small timestep. This dramatically increases the computational cost of nowadays simulations. To design more computationally efficient solvers, a popular approach is to use Lattice-Boltzmann methods. Originating from the kinetic theory of gases, this method have gained a tremendous popularity among fluid dynamicists due to its cheap and easily implemented collide & stream algorithm. However, its intrinsic assumptions confines classical Lattice-Boltzmann solvers to weakly compressible flows. Yet, some compressible models have been proposed. The purpose of this manuscript is to improve the robustness as well as accuracy of compressible Lattice-Boltzmann models. To this end, the Lattice-Boltzmann method is fully reinterpreted as a numerical scheme. This allows a straightforward and parsimonious derivation of the equivalent Navier-Stokes-Fourier system using the sole assumption of a negligible timestep. Using this formalism, the order of accuracy is shown to depend on the collision kernel, as well as the mechanical constitutive model. Various models are investigated and we show that the Knudsen number is not the sole parameter controlling the consistency with the Navier-Stokes-Fourier model. Additionally, capabilities of the entropy equation to model low supersonic flows is explained through standard shock wave theory arguments. A MUSCL-Hancock scheme is employed to discretize the entropy equation and improve both stability and accuracy compared to previous schemes. Equipped with this new formalism, a compressible pressure-based model is proposed and validated on various supersonic test cases. Then, we unify all compressible models proposed by our group under a single formalism and investigate the differences and optimal choices for the various degrees of freedom of our family of models. Finally, this unified model is validated on high supersonic smooth flows and low supersonic shocked flows. 

Directeur de these M. Pierre BOIVIN CNRS / M2P2
CoDirecteur de these  M. Guillaume CHIAVASSA  Centrale Marseille
Rapporteur M. Rémi ABGRALL Univertität Zürich
Rapporteur M. Jonas LATT Université de Genève
Examinateur Mme Paola CINNELLA Sorbonne Université
Examinateur M. Manfred KRAFCZYK Technische Universität Braunschweig
Examinateur M. Pierre SAGAUT Aix-Marseille Université / M2P2