Thermodynamics, Numerical Waves, Interfaces, Combustion Team

Thermal effects in rotating systems

Waves and immersed interfaces

Modeling of reactive multiphase flows

Modeling and simulation of forest fire propagation

Mixture thermodynamics

Thermodynamics, Numerical Waves, Interfaces, Combustion Team
Présentation

The TONIC team is developing an activity of modeling of strongly multi-scale phenomena. It covers in particular multiphase and/or reactive flows, from the scale of the isolated injector (a few mm) to the scale of a fully developed forest fire (several hectares). 
Adapted numerical methods are developed in parallel, in particular for soil imaging (detection of slicks by acoustic analysis), or for the modeling of radiative transfers.

In parallel to these multi-scale developments, analytical work is carried out to support the construction of models. An important research effort is devoted to the modeling of the thermodynamics of multiphase mixtures (thermochemical equilibrium calculations, complex thermodynamic closures), or to the development of reduced kinetic models for combustion.

Team leader

  • Chargé de Recherche CNRS - HDR
    équipe Thermodynamique Ondes Numérique Interfaces Combustion
x >

Annuaire personnel permanent

  • Chargé de Recherche CNRS - HDR
    équipe Thermodynamique Ondes Numérique Interfaces Combustion
  • Professeur Centrale Méditerranée
    équipe Thermodynamiques, Ondes, Numérique, Interfaces et Combustion
  • Professeur des Universités AMU - émérite
    équipe Thermodynamiques, Ondes, Numérique, Interfaces et Combustion
  • Professeur des Universités AMU - émérite
    équipe Thermodynamique Ondes Numérique Interfaces Combustion
  • Chargée de Recherche CNRS
    équipe Thermodynamiques, Ondes, Numérique, Interfaces et Combustion
  • Maître de Conférences AMU - HDR
    équipe Thermodynamiques, Ondes, Numérique, Interfaces et Combustion
x >

Doctorants, Post-Doctorants et CDD

x >

Dernières publications de l'équipe

  • Hippolyte Lerogeron, Pierre Boivin, Vincent Faucher, Julien Favier. A Numerical Framework for Fast Transient Compressible Flows Using Lattice Boltzmann and Immersed Boundary Methods. International Journal for Numerical Methods in Engineering, 2025, 126 (3), ⟨10.1002/nme.7647⟩. ⟨hal-04958000⟩ Plus de détails...
  • Ksenia Kozhanova, Song Zhao, Raphaël Loubère, Pierre Boivin. A hybrid a posteriori MOOD limited lattice Boltzmann method to solve compressible fluid flows – LBMOOD. Journal of Computational Physics, 2025, 521, Part 2, pp.113570. ⟨10.1016/j.jcp.2024.113570⟩. ⟨hal-04802259⟩ Plus de détails...
  • J. Carmona, I. Raspo, V. Moureau, P. Boivin. A simple explicit thermodynamic closure for multi-fluid simulations including complex vapor–liquid equilibria: Application to NH3-H2O mixtures. International Journal of Multiphase Flow, 2025, 182, pp.105044. ⟨10.1016/j.ijmultiphaseflow.2024.105044⟩. ⟨hal-05007303⟩ Plus de détails...
  • Gabriel Meletti, Stéphane Abide, Uwe Harlander, Isabelle Raspo, Stéphane Viazzo. On the influence of the heat transfer at the free surface of a thermally driven rotating annulus. Physics of Fluids, 2025, 37 (3), pp.034101. ⟨10.1063/5.0248712⟩. ⟨hal-05007412⟩ Plus de détails...
  • D. Morvan, G. Accary. How to Properly Account for Slope Effect in Byram’s Convective Number: A New Proposal. Fire Technology, 2024, ⟨10.1007/s10694-024-01670-1⟩. ⟨hal-04960163⟩ Plus de détails...
x >

Dernières rencontres scientifiques

Projets en cours

Soutenances de thèses et HDR

11 juin 2025 - Energetics, aerodynamics and intensification of plasma arc cutting jets / PhD Defense Frederic CAMY-PEYRET
Doctorant : Frederic CAMY-PEYRET 

Date et lieu : le 11 juin à 14h00 ; amphi N°3 - Centrale Méditerranée

Résumé : The plasma cutting process of electrically conductive materials is one of the three main thermal cutting processes for sheet metal, along with laser and oxy-cutting. This process has gradually spread in industry since the 70s, and is now essential in construction and metal fabrication activities. Improvements in this technology have historically been made by industrial equipment manufacturers using a highly empirical and technological approach, probably due to the lack of fundamental R&D of the sector, and more likely the complexity of the multi-physical phenomenology of the plasma jets in consideration. These can be described as an under-expanded jet at the outlet of a millimetre-sized sonic nozzle, at one’s throat a strongly ionized plasma column is heated above 20000 K by the passage of electrical current.
The complexity of the object of study lies in the numerous physical effects, often themselves difficult to apprehend separately, which may a priori contribute to determining the structure of the plasma jet: thermodynamic properties and transport coefficients of the plasma, geometry of the nozzle and its aerodynamics, pressure, swirl intensity, turbulence, radiative transfers at high temperatures, electrostatic and electromagnetic coupling between the current passage and the plasma, electrodes behaviour... Since the 2000s, largely in collaboration with the public research scholar community, some industrial players have engaged in more fundamental and scientific approaches to better understand and describe these technological objects, an approach to which the author has contributed for 25 years.
After a summary of the career and research work carried out or supervised by the author in the close by disciplines of fluid mechanics, combustion, materials, and processes, the issue addressed in this thesis manuscript will therefore focus on the energetics and the phenomenology of transferred arc plasma jets applied for cutting. This topic is the most populated cluster of my experience as an industrial researcher, and also a subject whose multi-physics nature has greatly benefited from the experience acquired in studying other problems.
We will introduce to the reader the technologies and processes, we will cover the experimental and numerical simulation tools and methods we have utilized and contributed to develop, we will study the energy scales at work in plasma cutting compared to the competing laser process, and detail the mechanisms of energy supply and distribution to the sheet. We will then showcase the advances in the understanding of the constriction of the plasma column through the description of nozzle physics down to the sonic throat, before going farther downstream by analysing the structure of the under- expanded plasma jet developing between the nozzle outlet and the sheet metal workpiece. We finally draw conclusions on how to control the plasma jet power density to favour cutting accuracy.

Keywords: plasma cutting process, electric arc plasma, energy efficiency, metal sheet cutting, under-expanded supersonic plasma jet, aerodynamic adaptation, thermal plasma thermodynamics, high-flux heat transfers, power density, intensification

Jury
Stéphane PELLERIN  / Professeur, Université d'Orléans / Rapporteur
Luc VERVISCH  / Professeur, INSA de Rouen / Rapporteur
Françoise BATAILLE  / Professeur, Université de Perpignan Via Domitia / Examinatrice
Philippe ROBIN-JOUAN  / Fellow Expert, GE Vernova / Examinateur
Sergey GAVRILYUK  / Professeur, Aix-Marseille Université / Président du jury
Eric SERRE  / DR CNRS, M2P2 / Examinateur
Pierre BOIVIN  / CR CNRS, M2P2 / Directeur de thèse
Pierre FRETON  / Professeur, Université de Toulouse / Co-directeur de thèse
Bernard LABEGORRE  / Senior Expert, Air Liquide / Membre invité
21 février 2024 - Study of Thermoacoustic Instabilities using the Lattice Boltzmann Method / PhD Defense Karthik Bhairapurada
Doctorant : Karthik BHAIRAPURADA

Date : le mercredi 21 février 2024 à 14h00 dans l’amphithéâtre du LMA ; 4, impasse Nikola Tesla ; 13013 Marseille

Abstract : In the quest to address global warming, renewable energy has emerged as a critical focus. Yet, the reality of our current energy landscape makes the complete abandonment of combustion technologies unfeasible. Innovations such as 'Lean Burn' combustion and the integration of cleaner fuels like Hydrogen offer a compromise, balancing immediate energy demands with environmental objectives. However, these advancements also introduce significant challenges, especially the heightened risk of thermoacoustic instabilities in combustion systems, which could lead to catastrophic failures.
Traditional experimental methods for studying and mitigating these instabilities are not only prohibitively expensive but also often impractical. Consequently, there is a growing advocacy for the adoption of advanced numerical methods as efficient and cost-effective alternatives. This thesis underscores the potential of one such method, known as the Lattice Boltzmann Method (LBM). LBM is a numerical method renowned for its distinctive algorithmic structure that facilitates linear interactions between adjacent nodes and enables the local evaluation of non-linear terms. These inherent features endow LBM with computational efficiency and low dissipation properties for acoustics transport, making it a promising tool for simulating flame-acoustic interactions and addressing thermoacoustic instabilities.
This research validates the capabilities of LBM in effectively resolving such instabilities. Through foundational assertions of simple flame-acoustic interactions and simulations within narrow channels, the reliability of the method for investigating combustion instabilities across various scenarios is established. Furthermore, the thesis also explores the field of 'Combustion Noise', demonstrating the potential of LBM in investigating sound generation and propagation phenomena, particularly in hydrogen-fueled combustion scenarios. Finally, the robustness and versatility of LBM in handling thermoacoustic instabilities of turbulent reactive flows in complex geometries are demonstrated through the simulation of an aeronautical burner configuration called PRECCINSTA.
Overall, guided by the importance of innovative numerical methods in bridging the gap between current energy needs and long-term environmental sustainability, this thesis underscores the potential of LBM. Through varied investigations, it not only highlights the capabilities of the method but also contributes to a broader understanding of thermoacoustic phenomena across various settings.

Jury

Mr. Pierre BOIVIN                             Chargé de Recherche, CNRS, France                              Directeur de thèse
Mr. Bruno DENET                             Professeur, AMU, France                                                   Co-Directeur de thèse
Ms. Françoise BAILLOT                   Professeure, CORIA, France                                              Rapporteur
Mr. Vadim KURDYUMOV                 Senior Researcher, CIEMAT, Espagne                               Rapporteur
Mr. Luc VERVISCH                          Professeur, CORIA, France                                                Examinateur
Mr. Laurent GICQUEL                      Senior Researcher, CERFACS, France                              Examinateur
Mr. Julien FAVIER                            Professeur, AMU, France                                                    Président