Membrane Processes

Membrane bioreactors

Membrane characterization and drinking water

Process industrialization and CFD

Process Intensification

Transport properties and metrology

Treatment of industrial effluents

Seawater treatment and aquaculture


suite...

Membrane Processes Team
Présentation


The EPM team devotes its activities to applied research and its transfer to the industrial world where scientific, economic and confidentiality requirements of the treated subjects interact.
The activities of the team are in strong progression and cover a broad spectrum: from the design of new membranes and modules to the development and installation of new industrial membrane processes. The main objective of the Membrane Processes team is to improve the efficiency of these processes limited by fouling and the cost of implementation, while providing innovative solutions for the treatment of specific effluents and the purification of high value-added compounds.

Any evolution of the processes can only be based on an in-depth knowledge of the problems that generate them and the choices that can be made. The scientific issues raised are complex and multiple. In this context, most of the research activities are carried out in partnership with an industrial company within the framework of a research collaboration contract. Starting from an idea developed in the laboratory or an industrial problem, it is a question here of working in an industrial-EPM partnership in a realistic framework of operating variables. 

Ongoing projects

The team is developing numerous national and international research projects funded by different organizations or industrial partnerships.
The optimization of membrane processes requires a better understanding of the mechanisms involved. The activities of the EPM are divided into 6 interrelated research axes:

    - Membrane bioreactor (Benoit Marrot)
    - Membrane characterization and drinking water (Yvan Wyart)
    - Process Industrialization and CFD (Philippe Moulin)

    - Process Intensification (Mathias Monnot)
    - Transport Properties and Metrology (Jean Philippe Bonnet)
    - Effluent treatment (Emilie Carretier)
    - Seawater treatment and aquaculture (Clémence Cordier)


For more information, click on the images below !

Team leader

x >

Annuaire personnel permanent

x >

Doctorants, Post-Doctorants et CDD

x >

Equipements

Plate forme de 20 pilotes de filtration
1 pilote de perméation gazeuse
2 pilote de pervaporation
1 OI haute pression, NF,
3 pilotes de screening
9 pilotes de MF-UF
1 BRM
1 station de production d'eau potable 20m3.J-1
1 unité de purification d'eau 240m3.J-1
1 BRM industriel
1 pilote multi scales MF-UF

Dernières Publications de l'équipe

  • Adil Mouahid, Magalie Claeys-Bruno, Sébastien Clercq. A New Methodology Based on Experimental Design and Sovová’s Broken and Intact Cells Model for the Prediction of Supercritical CO2 Extraction Kinetics. Processes, 2024, 12 (9), pp.1865. ⟨10.3390/pr12091865⟩. ⟨hal-04791947⟩ Plus de détails...
  • Carla Kalakech, Géraldine Agusti, Emilie Gagnière, Ruben Vera, Denis Mangin, et al.. Paracetamol polymorphs detection in suspension via a new ex situ Fourier Transform Near Infrared spectroscopy method. Chemical Engineering Research and Design, 2024, 208, pp.808-819. ⟨10.1016/j.cherd.2024.07.028⟩. ⟨hal-04743457⟩ Plus de détails...
  • Emilie Gout, Mathias Monnot, Olivier Boutin, Pierre Vanloot, Philippe Moulin. Prospects of industrial membrane concentrates: treatment of landfill leachates by coupling reverse osmosis and wet air oxidation. Environmental Science and Pollution Research, 2024, ⟨10.1007/s11356-024-32461-4⟩. ⟨hal-04593773⟩ Plus de détails...
  • J. Yang, A. Mouilleron, M. Monnot, C. Cordier, P. Moulin. Ultrafiltration for the biosecurity of fish production: The case of a sturgeon nursery. Aquacultural Engineering, 2023, 103, pp.102366. ⟨10.1016/j.aquaeng.2023.102366⟩. ⟨hal-04202096⟩ Plus de détails...
  • Emilie Gout, Fatimatou Toure Lo, Mathias Monnot, Olivier Boutin, Pierre Vanloot, et al.. Coupling membrane processes with wet air oxidation for the remediation of industrial effluents. Chemical Engineering Journal, 2023, 472, pp.144937. ⟨10.1016/j.cej.2023.144937⟩. ⟨hal-04543342⟩ Plus de détails...
x >

Rencontres scientifiques

Soutenances de thèses et HDR

27 octobre 2024 - Production of drinking water by low-pressure reverse osmosis / Hugo Taligrot PhD Defense
Doctorant : Hugo Taligrot

Date :  Wednesday November 27, 2024 at 9am in the Cerege Amphitheatre at the Technopôle de l'Arbois-Méditerranée

Abstract: Freshwater is essential for life, ecosystems and industry, but the intensification of human, agricultural and industrial activities is leading to high demand coupled with a decline in the quality of natural water. In the context of producing drinking water from natural freshwater, some pollutants are not completely stopped by conventional processes and can threaten public health, such as viruses and microplastics. Membrane processes are renowned for their ability to reduce effluent volumes while producing a very high quality permeate. The limitations of ultrafiltration, used for freshwater purification, in the face of the emergence, omnipresence or persistence of contaminants have led to attention being focused on low-pressure reverse osmosis (LPRO), recognised for its higher retention potential. This thesis aims to demonstrate (i) the potential of LPRO to produce high-quality drinking water from fresh water, while addressing the challenges associated with the retention of viruses and then microplastics, as well as (ii) the durability of the membranes. Finally, the stability of water quality in distribution networks will be studied in order to cover the supply chain. Although the literature indicates high viral abatement for LPRO, these results do not always reflect reality, as they are based on individual model viruses at concentrations much higher than those found in natural freshwater, in order to promote their detection in the permeate. In this study, concentration methods were developed to analyse large volumes of permeate at low virus concentrations, enabling the limit of quantification to be reduced and the performance of the LPRO process to be assessed. The LPRO process was studied on two scales (laboratory and semi-industrial) with regard to the retention of two pathogenic enteric viruses and a model virus, respectively an adenovirus (AdV 41), an enterovirus (CV-B5) and the bacteriophage MS2, at concentrations representative of those found in the environment. The concentration methods proved effective in treating the permeates from each LPRO pilot scale. The LPRO process achieves significant virus removal (6 log on average) at different scales, although total retention is not achieved. In-depth analysis of used LPRO spiral wound modules has suggested that viral retention defects may originate from the module’s O-rings and possibly its glue lines, but not from the membrane if it is intact. In fact, various defects were observed during the autopsy of the LPRO modules (folded or abraded membrane, presence of patches), which had a significant impact on performance. Analysis of the ageing of the spiral-wound modules revealed a reduction in membrane performance in terms of permeability and retention rate for monovalent (NaCl) and divalent (CaSO4) salts. However, the retention rate for microplastics (tested on polymethyl methacrylate beads) remained total, with reductions of over 7 log. Finally, water produced by LPRO and injected into a simulated distribution network showed reduced bacterial growth potential, with a lower concentration of active cells measured by flow cytometry and lower total organic carbon, compared with water produced by a conventional process or by ultrafiltration.

Keywords: low-pressure reverse osmosis, drinking water production, enteric viruses, microplastics, membrane ageing, biological stability

Jury:
Clémence COETSIER,    Reviewer,   AP, Paul Sabatier University
Jean Philippe CROUE,    Reviewer,   PR, University of Poitiers
Isabelle BERTRAND,      Examiner,  AP, University of Lorraine
Jean-Luc BOUDENNE,   President of the jury,   PR, Aix-Marseille University
Philippe MOULIN,           Thesis Supervisor, PR,   Aix-Marseille University
Mathias MONNOT,         Thesis Supervisor, AP,   Aix-Marseille University

Laurent MOULIN,            Guest Member, Head of R&D, Eau de Paris
Sébastien WURTZER,    Guest Member, Molecular and Emerging Pathogens Manager, Eau de Paris
25 juin 2024 - Intensification de filière industrielles de traitement des eaux et des effluents par procédés membranaires : Vers une utilisation plus sûre et plus durable de l'eau / Soutenance HDR Mathias Monnot
Date et lieu :  le mardi 25 juin à 9h15, salle de projection du Forum à l'Arbois (Technopôle de l'Arbois, avenue Louis Philibert à Aix-en-Provence)

Résumé : La mise en œuvre des procédés membranaires pour le traitement des eaux et des effluents a connu un essor considérable ces dernières années grâce à leur potentiel d’intensification des filières industrielles. Par rapport aux procédés conventionnels de séparation, les procédés membranaires permettent généralement une augmentation de la productivité et de la sélectivité, une réduction de l’emprise au sol, une réduction de la consommation en produits chimiques, et même souvent une réduction des coûts d’investissement et de fonctionnement. Ils permettent aussi des séparations sur une large gamme de tailles, du micromètre au nanomètre. Dans ce contexte d’intensification et en considérant les enjeux actuels majeurs de la protection de l’environnement et de la ressource en eau, il s’agit d’étudier l’efficacité des procédés membranaires dans les domaines de la production d’eau potable, de la production d’eau pour des applications industrielles, du traitement des eaux usées domestiques et des effluents industriels. Les travaux présentés dans ce manuscrit d’Habilitation à Diriger les Recherches visent donc à améliorer l'efficacité et la durabilité des filières de traitement des eaux et des effluents, en se concentrant sur la réduction de l'impact environnemental pour diverses applications et sur l'amélioration de la qualité de l’eau en particulier vis-à-vis de polluants microbiologiques et microplastiques. Dans ce cadre, les résultats obtenus ont ainsi contribué à améliorer l’état des connaissances scientifiques au sujet de la faisabilité des procédés membranaires pour de nouvelles applications et de l’optimisation de leur fonctionnement à échelle semi-industrielle voire industrielle. Le développement de techniques analytiques poussées au service du Génie des Procédés est un réel apport à cette intensification. Des perspectives de recherche pour une utilisation plus sûre et plus durable de l’eau grâce aux procédés membranaires sont également présentées.

Mots-clés : procédés membranaires, intensification, génie des procédés, traitement de l'eau, eau potable, eaux usées, effluent industriel, polluants émergents

Jury
Corinne CABASSUD                  Rapporteure /   Professeure des Universités émérite – INSA Toulouse
Jean-Philippe CROUÉ               Rapporteur /   Professeur des Université – Université de Poitiers
Julie MENDRET                         Rapporteure /   Maître de Conférences HDR – Université de Montpellier
Christel CAUSSERAND              Examinatrice /   Professeure des Universités – Université de Toulouse 3
Alberto FIGOLI                         Examinateur /   Directeur de Recherche – Université de Calabre, Italie 
Pascal WONG WAH CHUNG      Examinateur /   Professeur des Universités – Aix-Marseille Université
Philippe MOULIN                     Tuteur d’HDR /   Professeur des Universités – Aix-Marseille Université
Sylvain DURÉCU                       Invité /   Directeur de la R&D chez Séché Environnement
Partenaires industriels et académiques