extraction, cristallisation et stérilisation au CO2 supercritique
expérimentations
modélisation/simulation
réalisation de "Predict" : logiciel de modélisation et de simulation numérique développé pour le calcul de diverses propriétés physiques dans le cas de procédés utilisant du CO2 supercritique (VOIR PLUS ICI)
Publications scientifiques au M2P2
2023
Vénicia Numa, Christelle Crampon, Arnaud Bellon, Adil Mouahid, Elisabeth Badens. Valorization of food side streams by supercritical fluid extraction of compounds of interest from apple pomace. Journal of Supercritical Fluids, 2023, 202, pp.106056. ⟨10.1016/j.supflu.2023.106056⟩. ⟨hal-04294235⟩ Plus de détails...
Supercritical CO2 (scCO2) extraction, a green technology still little applied to side streams, has been used to explore the potential recovery of beneficial compounds from apple pomace, a food industry byproduct. The study examines the potential of scCO2 extraction on freeze-dried and airflow dried apple pomace, using laboratory-scale equipment with varying pressures (200–400 bar), temperatures (35–55 °C) with a fixed CO2 flow rate. Extracts were analyzed through LC-MS and GC-MS, while antioxidant capacity was assessed using the ABTS assay. The results were compared to those from Soxhlet n-hexane extraction. Optimal conditions of 300 bar and 55 °C with freeze-dried apple pomace yielded the highest mass loss. The main compounds identified included glyceryl dilinoleate, linoleic acid, and diacyl glycerol, with significant ursolic acid content. A preliminary higher scale feasibility test under optimal conditions demonstrated promising, duplicable outcomes, supporting prior claim that apple pomace contains valuable ingredients that can be reused in various industrial sectors.
Vénicia Numa, Christelle Crampon, Arnaud Bellon, Adil Mouahid, Elisabeth Badens. Valorization of food side streams by supercritical fluid extraction of compounds of interest from apple pomace. Journal of Supercritical Fluids, 2023, 202, pp.106056. ⟨10.1016/j.supflu.2023.106056⟩. ⟨hal-04294235⟩
Victorine Warambourg, Adil Mouahid, Christelle Crampon, Anne Galinier, Magalie Claeys-Bruno, et al.. Supercritical CO2 sterilization under low temperature and pressure conditions. Journal of Supercritical Fluids, 2023, 203, pp.106084. ⟨10.1016/j.supflu.2023.106084⟩. ⟨hal-04233306⟩ Plus de détails...
Sterilization using supercritical carbon dioxide has been proven to be efficient for decades now. The aim of this work was to implement a process of sterilization adapted to thermosensitive polymeric materials and highlight the lowest conditions of pressure and temperature which would enable a bacterial reduction higher than 6-log. Inactivation experiments were performed on spores of Bacillus subtilis over a pressure range lying from 60 to 200 bar, and a temperature varying from 35° to 60°C, with and without additive. Preliminary experiments allowed us to determine a restricted experimental domain used for the design of the experiments, investigating the influence of pressure, temperature, process duration, and additive content on bacterial reduction. It was shown that sterilization conducted at 110 bar, 40 °C, for 20 min with 200 ppm of H2O2, leading to a bacterial reduction of 8.73-log, may be considered as optimal for IMD sterilization.
Victorine Warambourg, Adil Mouahid, Christelle Crampon, Anne Galinier, Magalie Claeys-Bruno, et al.. Supercritical CO2 sterilization under low temperature and pressure conditions. Journal of Supercritical Fluids, 2023, 203, pp.106084. ⟨10.1016/j.supflu.2023.106084⟩. ⟨hal-04233306⟩
Mathieu Martino, Adil Mouahid, Michelle Sergent, Camille Desgrouas, Catherine Badens, et al.. Supercritical millifluidic process for siRNA encapsulation in nanoliposomes for potential Progeria treatment (ex-vivo assays). Journal of Drug Delivery Science and Technology, 2023, 87, ⟨10.1016/j.jddst.2023.104804⟩. ⟨hal-04254108⟩ Plus de détails...
A millifluidic process working in continuous mode for the preparation of nanoliposomes using supercritical CO2 has been developed. Nanoliposomes with an average diameter ranging between 123.9 ± 3.0 and 165.7 ± 1.6 nm depending on the operating conditions were obtained. The effects of pressure (90–150 bar), temperature (35–45 °C) and phospholipid mass ratio (0.1–1.9 wt%) in feed solution on liposome sizes were investigated. The concentration of phospholipids was found to be the most significant parameter for controlling the mean diameter of nanoliposomes while pressure and temperature had a minor influence on liposomes’ properties. The encapsulation of siRNAs targeting the LMNA gene by nanoliposomes obtained with the millifluidic process was achieved at optimized operating conditions (150 bar, 35 °C and a phospholipid mass ratio in the feed solution of 0.1 wt%). The resulting formulations were compared with commercial transfection agents in ex vivo assays. These assays showed a decrease in the expression of the encoded protein lamin A for the formulations obtained with the process developed in this work. Therefore, the use of siRNAs targeting LMNA, encapsulated by nanoliposomes represents a potential new therapeutic approach for the treatment of progeria.
Mathieu Martino, Adil Mouahid, Michelle Sergent, Camille Desgrouas, Catherine Badens, et al.. Supercritical millifluidic process for siRNA encapsulation in nanoliposomes for potential Progeria treatment (ex-vivo assays). Journal of Drug Delivery Science and Technology, 2023, 87, ⟨10.1016/j.jddst.2023.104804⟩. ⟨hal-04254108⟩
Journal: Journal of Drug Delivery Science and Technology
Adil Mouahid, Magalie Claeys-Bruno, Isabelle Bombarda, Sandrine Amat, Andrea Ciavarella, et al.. Valorization of handmade argan press cake by supercritical CO2 extraction. Food and Bioproducts Processing, 2023, 137, pp.168-176. ⟨10.1016/j.fbp.2022.11.011⟩. ⟨hal-03992094⟩ Plus de détails...
The capability of supercritical CO2 to extract edible oil from handmade Argan press cake was investigated. The aim is to enable Moroccan cooperatives to improve their economic situation by valuing the handmade argan press cake, which is nowadays considered as a waste, applying a clean extraction process. Extraction experiments were conducted at 300 and 400 bar, 333 K and 0.14 kg/h on dried biomass. The fatty acids and tocopherols compositions of the extracted oil were found similar to previous studies and correspond to a commercial edible oil. The air flow dried biomass exhibits a higher extraction yield compared to the freeze-dried biomass. A pressure of 300 bar seems to be suffcient to allow the extraction of oil with a satisfactory extraction kinetic.
Adil Mouahid, Magalie Claeys-Bruno, Isabelle Bombarda, Sandrine Amat, Andrea Ciavarella, et al.. Valorization of handmade argan press cake by supercritical CO2 extraction. Food and Bioproducts Processing, 2023, 137, pp.168-176. ⟨10.1016/j.fbp.2022.11.011⟩. ⟨hal-03992094⟩
Mathieu Martino, Adil Mouahid, Michelle Sergent, Camille Desgrouas, Catherine Badens, et al.. Supercritical millifluidic process for siRNA encapsulation in nanoliposomes for potential Progeria treatment (ex-vivo assays). Journal of Drug Delivery Science and Technology, 2023, 87, ⟨10.1016/j.jddst.2023.104804⟩. ⟨hal-04254108⟩ Plus de détails...
Mathieu Martino, Adil Mouahid, Michelle Sergent, Camille Desgrouas, Catherine Badens, et al.. Supercritical millifluidic process for siRNA encapsulation in nanoliposomes for potential Progeria treatment (ex-vivo assays). Journal of Drug Delivery Science and Technology, 2023, 87, ⟨10.1016/j.jddst.2023.104804⟩. ⟨hal-04254108⟩
Journal: Journal of Drug Delivery Science and Technology
Adil Mouahid, Magalie Claeys-Bruno, Isabelle Bombarda, Sandrine Amat, Andrea Ciavarella, et al.. Valorization of handmade argan press cake by supercritical CO2 extraction. Food and Bioproducts Processing, 2023, 137, pp.168-176. ⟨10.1016/j.fbp.2022.11.011⟩. ⟨hal-04063823⟩ Plus de détails...
The capability of supercritical CO2 to extract edible oil from handmade Argan press cake was investigated. The aim is to enable Moroccan cooperatives to improve their economic situation by valuing the handmade argan press cake, which is nowadays considered as a waste, applying a clean extraction process. Extraction experiments were conducted at 300 and 400 bar, 333 K and 0.14 kg/h on dried biomass. The fatty acids and tocopherols compositions of the extracted oil were found similar to previous studies and correspond to a commercial edible oil. The air flow dried biomass exhibits a higher extraction yield compared to the freeze-dried biomass. A pressure of 300 bar seems to be suffcient to allow the extraction of oil with a satisfactory extraction kinetic.
Adil Mouahid, Magalie Claeys-Bruno, Isabelle Bombarda, Sandrine Amat, Andrea Ciavarella, et al.. Valorization of handmade argan press cake by supercritical CO2 extraction. Food and Bioproducts Processing, 2023, 137, pp.168-176. ⟨10.1016/j.fbp.2022.11.011⟩. ⟨hal-04063823⟩
Adil Mouahid, Pierre Boivin, Suzanne Diaw, Elisabeth Badens. Widom and extrema lines as criteria for optimizing operating conditions in supercritical processes. Journal of Supercritical Fluids, 2022, 186, pp.105587. ⟨10.1016/j.supflu.2022.105587⟩. ⟨hal-03797377⟩ Plus de détails...
Adil Mouahid, Pierre Boivin, Suzanne Diaw, Elisabeth Badens. Widom and extrema lines as criteria for optimizing operating conditions in supercritical processes. Journal of Supercritical Fluids, 2022, 186, pp.105587. ⟨10.1016/j.supflu.2022.105587⟩. ⟨hal-03797377⟩
Mathieu Martino, Adil Mouahid, Paolo Trucillo, Elisabeth Badens. Elaboration of Lutein‐Loaded Nanoliposomes Using Supercritical CO2. European Journal of Lipid Science and Technology, 2021, 123 (4), pp.2000358. ⟨10.1002/ejlt.202000358⟩. ⟨hal-03597665⟩ Plus de détails...
A batch process for producing lutein-loaded liposomes using supercritical CO2 is studied. The effects of the variation of pressure (10 and 15 MPa), temperature (308, 313, and 318 K), and lutein to lipid ratio (0.5 and 1 wt%) on the liposome average size and size distribution are investigated, as well as on the encapsulation efficiency (EE) of lutein. This process is worked in a repeatable manner and is allowed the production of nanoliposomes with mean diameters (MDs) ranging from 65 ± 33 to 77 ± 40 nm, obtaining lutein EEs ranging from 82.1 ± 3.7% to 91.9 ± 2.9%. Temperature, pressure, and lutein to lipid ratio seem to have no impact on size, size distribution, and EE on formed liposomes. The use of low temperatures and low pressures allows the obtainment of liposomes with diameters less than 100 nm and limits the process energy cost. Moreover, the supercritical CO2-assisted batch process effectively encapsulates lutein into liposome, an antioxidant molecule used for the prevention of retinal damage. Liposomes formed by this supercritical process have the desired characteristics for human target delivery. Practical applications: This work on the optimization of a process for developing liposomes in a supercritical environment has applications in medicine. Indeed, the liposomes formed with this process are nanoliposomes with a size of less than 80 nm. In addition, excellent lutein EEs (hydrophobic molecules) show that the liposomes formed constitute excellent coating matrices for the protection of active ingredients. These reasons make these liposome matrices applicable in nanomedicine (injection of sensitive drugs requiring protection before injection). The elaboration process also makes it possible to form liposomes with desired properties by changing pressure, temperature, or lecithin concentration. Therefore, this work focuses on the properties of liposomes as a function of the operating conditions.
Mathieu Martino, Adil Mouahid, Paolo Trucillo, Elisabeth Badens. Elaboration of Lutein‐Loaded Nanoliposomes Using Supercritical CO2. European Journal of Lipid Science and Technology, 2021, 123 (4), pp.2000358. ⟨10.1002/ejlt.202000358⟩. ⟨hal-03597665⟩
Journal: European Journal of Lipid Science and Technology
Adil Mouahid, Isabelle Bombarda, Magalie Claeys-Bruno, Sandrine Amat, Emmanuelle Myotte, et al.. Supercritical CO2 extraction of Moroccan argan (Argania spinosa L.) oil: Extraction kinetics and solubility determination. Journal of CO2 Utilization, Elsevier, 2021, 46, pp.101458. ⟨10.1016/j.jcou.2021.101458⟩. ⟨hal-03142714⟩ Plus de détails...
Adil Mouahid, Isabelle Bombarda, Magalie Claeys-Bruno, Sandrine Amat, Emmanuelle Myotte, et al.. Supercritical CO2 extraction of Moroccan argan (Argania spinosa L.) oil: Extraction kinetics and solubility determination. Journal of CO2 Utilization, Elsevier, 2021, 46, pp.101458. ⟨10.1016/j.jcou.2021.101458⟩. ⟨hal-03142714⟩
Mathieu Martino, Adil Mouahid, Paolo Trucillo, Elisabeth Badens. Elaboration of Lutein‐Loaded Nanoliposomes Using Supercritical CO2. European Journal of Lipid Science and Technology, 2021, 123 (4), pp.2000358. ⟨10.1002/ejlt.202000358⟩. ⟨hal-03334357⟩ Plus de détails...
A batch process for producing lutein-loaded liposomes using supercritical CO2 is studied. The effects of the variation of pressure (10 and 15 MPa), temperature (308, 313, and 318 K), and lutein to lipid ratio (0.5 and 1 wt%) on the liposome average size and size distribution are investigated, as well as on the encapsulation efficiency (EE) of lutein. This process is worked in a repeatable manner and is allowed the production of nanoliposomes with mean diameters (MDs) ranging from 65 ± 33 to 77 ± 40 nm, obtaining lutein EEs ranging from 82.1 ± 3.7% to 91.9 ± 2.9%. Temperature, pressure, and lutein to lipid ratio seem to have no impact on size, size distribution, and EE on formed liposomes. The use of low temperatures and low pressures allows the obtainment of liposomes with diameters less than 100 nm and limits the process energy cost. Moreover, the supercritical CO2-assisted batch process effectively encapsulates lutein into liposome, an antioxidant molecule used for the prevention of retinal damage. Liposomes formed by this supercritical process have the desired characteristics for human target delivery. Practical applications: This work on the optimization of a process for developing liposomes in a supercritical environment has applications in medicine. Indeed, the liposomes formed with this process are nanoliposomes with a size of less than 80 nm. In addition, excellent lutein EEs (hydrophobic molecules) show that the liposomes formed constitute excellent coating matrices for the protection of active ingredients. These reasons make these liposome matrices applicable in nanomedicine (injection of sensitive drugs requiring protection before injection). The elaboration process also makes it possible to form liposomes with desired properties by changing pressure, temperature, or lecithin concentration. Therefore, this work focuses on the properties of liposomes as a function of the operating conditions.
Mathieu Martino, Adil Mouahid, Paolo Trucillo, Elisabeth Badens. Elaboration of Lutein‐Loaded Nanoliposomes Using Supercritical CO2. European Journal of Lipid Science and Technology, 2021, 123 (4), pp.2000358. ⟨10.1002/ejlt.202000358⟩. ⟨hal-03334357⟩
Journal: European Journal of Lipid Science and Technology
Adil Mouahid, Isabelle Bombarda, Magalie Claeys-Bruno, Sandrine Amat, Emmanuelle Myotte, et al.. Supercritical CO2 extraction of Moroccan argan (Argania spinosa L.) oil: Extraction kinetics and solubility determination. Journal of CO2 Utilization, 2021, 46, pp.101458. ⟨10.1016/j.jcou.2021.101458⟩. ⟨hal-03142714⟩ Plus de détails...
Experimental and modelling investigations of supercritical CO 2 extraction of oil from Argania spinosa L. kernels were conducted at pressure range from 200 to 400 bar, temperature range of 313-333 K at a CO 2 flow rate of 0.14 kg/h. Regardless of the pressure and the temperature, the highest achievable yield was estimated at 0.63 kg oil / kg biomass. The extraction kinetics were modeled with Sovová's broken and intact cells model. The extraction of type B was found to be the most suited extraction type. Argan oil solubility in supercritical CO 2 was determined and modelled with the Chrastil equation. A retrograde solubility behaviour was observed at 200 bar and the faster extraction kinetics were found at 400 bar and 333 K. The total tocopherols concentration was found between 389.7 and 1688.6 mg/kg extract. Experiments were performed on unroasted and roasted kernels.
Adil Mouahid, Isabelle Bombarda, Magalie Claeys-Bruno, Sandrine Amat, Emmanuelle Myotte, et al.. Supercritical CO2 extraction of Moroccan argan (Argania spinosa L.) oil: Extraction kinetics and solubility determination. Journal of CO2 Utilization, 2021, 46, pp.101458. ⟨10.1016/j.jcou.2021.101458⟩. ⟨hal-03142714⟩
Adil Mouahid, Kanitta Seengeon, Mathieu Martino, Christelle Crampon, Avery Kramer, et al.. Selective extraction of neutral lipids and pigments from Nannochloropsis salina and Nannochloropsis maritima using supercritical CO2 extraction: Effects of process parameters and pre-treatment. Journal of Supercritical Fluids, 2020, 165, pp.104934. ⟨10.1016/j.supflu.2020.104934⟩. ⟨hal-02960133⟩ Plus de détails...
Supercritical CO2 extraction experiments were conducted to investigate the effects of pretreatment and process parameters on neutral lipids, chlorophylls and carotenoids recovery on two species of Nannochloropsis. For Nannochloropsis maritima, a factorial experimental design was performed (P: [100-300] bar, T: [313-333] K). The highest extraction yields were obtained at the highest pressures and temperatures. Two drying modes, ring drying and air flow drying, were compared. Although total extraction yield and extraction kinetics were observed to be greater using air flow dried microalgae, extracts from this drying method resulted in partial degradation of glycerides in free fatty acids. Ring dried extracts maintained the same neutral lipid composition as the initial biomass. Based on these results, ring dried Nannochloropsis salina was extracted using supercritical CO2 at 333 K and both 300-400 bar. Extraction curves were modelled using the Sovova's mathematical model.
Adil Mouahid, Kanitta Seengeon, Mathieu Martino, Christelle Crampon, Avery Kramer, et al.. Selective extraction of neutral lipids and pigments from Nannochloropsis salina and Nannochloropsis maritima using supercritical CO2 extraction: Effects of process parameters and pre-treatment. Journal of Supercritical Fluids, 2020, 165, pp.104934. ⟨10.1016/j.supflu.2020.104934⟩. ⟨hal-02960133⟩
Sébastien Clercq, Adil Mouahid, Gérard Pèpe, Elisabeth Badens. Prediction of Crystal–Solvent Interactions in a Supercritical Medium: A Possible Way to Control Crystal Habit at High Supersaturations with Molecular Modeling. Crystal Growth & Design, 2020, 20 (10), pp.6863-6876. ⟨10.1021/acs.cgd.0c00920⟩. ⟨hal-03334336⟩ Plus de détails...
The purpose of this work is to contribute to a better control of the crystallization process which occurs in a supercritical medium, especially during the Supercritical AntiSolvent (SAS) process. It also aims to improve the prediction of crystal habit, thanks to the use of the molecular modeling software GenMol. The first part of the work was devoted to the crystal modeling of the two main forms of sulfathiazole in vacuo, considering Hartman’s attachment energy formalism. The second part considers solvent–crystal interactions throughout adsorption simulations to investigate the effect of growth environments on crystal habits. Lastly, modeling predictions were compared with grown crystals of sulfathiazole, observed after recrystallization with the SAS process from acetonitrile, acetone, tetrahydrofuran and acetic acid solutions. These comparisons demonstrated good predictions of crystal habit taking into consideration the growth environment. Neither carbon dioxide (antisolvent of the SAS process) nor acetonitrile leads to a modification of the isometric, in vacuo predicted habit of both forms. Acetone and tetrahydrofuran adsorb preferentially on some identified faces and lead to flat, leaflike, or tabular crystals. Acetic acid adsorbs on every one of the faces and hinders the phase transition to a more stable form, thus leading to crystals of the least stable, kinetically favored form I. Experimental observations were also rationalized by considering the different possible crystallization pathways, in particular Crystallization by Particle Attachment and Droplet Drying mechanisms occurring in the SAS process. This work confirms that solvent nature is one of the key elements to consider in order to better control the characteristics of particles grown using the SAS process and provides a new method to help to control it.
Sébastien Clercq, Adil Mouahid, Gérard Pèpe, Elisabeth Badens. Prediction of Crystal–Solvent Interactions in a Supercritical Medium: A Possible Way to Control Crystal Habit at High Supersaturations with Molecular Modeling. Crystal Growth & Design, 2020, 20 (10), pp.6863-6876. ⟨10.1021/acs.cgd.0c00920⟩. ⟨hal-03334336⟩
Adil Mouahid, Kanitta Seengeon, Mathieu Martino, Christelle Crampon, Avery Kramer, et al.. Selective extraction of neutral lipids and pigments from Nannochloropsis salina and Nannochloropsis maritima using supercritical CO2 extraction: Effects of process parameters and pre-treatment. Journal of Supercritical Fluids, 2020, 165, pp.104934. ⟨10.1016/j.supflu.2020.104934⟩. ⟨hal-03232116⟩ Plus de détails...
Supercritical CO2 extraction experiments were conducted to investigate the effects of pretreatment and process parameters on neutral lipids, chlorophylls and carotenoids recovery on two species of Nannochloropsis. For Nannochloropsis maritima, a factorial experimental design was performed (P: [100-300] bar, T: [313-333] K). The highest extraction yields were obtained at the highest pressures and temperatures. Two drying modes, ring drying and air flow drying, were compared. Although total extraction yield and extraction kinetics were observed to be greater using air flow dried microalgae, extracts from this drying method resulted in partial degradation of glycerides in free fatty acids. Ring dried extracts maintained the same neutral lipid composition as the initial biomass. Based on these results, ring dried Nannochloropsis salina was extracted using supercritical CO2 at 333 K and both 300-400 bar. Extraction curves were modelled using the Sovova's mathematical model.
Adil Mouahid, Kanitta Seengeon, Mathieu Martino, Christelle Crampon, Avery Kramer, et al.. Selective extraction of neutral lipids and pigments from Nannochloropsis salina and Nannochloropsis maritima using supercritical CO2 extraction: Effects of process parameters and pre-treatment. Journal of Supercritical Fluids, 2020, 165, pp.104934. ⟨10.1016/j.supflu.2020.104934⟩. ⟨hal-03232116⟩
Adil Mouahid, Kanitta Seengeon, Mathieu Martino, Christelle Crampon, Avery Kramer, et al.. Selective extraction of neutral lipids and pigments from Nannochloropsis salina and Nannochloropsis maritima using supercritical CO2 extraction: Effects of process parameters and pre-treatment. Journal of Supercritical Fluids, 2020, 165, pp.104934. ⟨10.1016/j.supflu.2020.104934⟩. ⟨hal-02960133⟩ Plus de détails...
Supercritical CO2 extraction experiments were conducted to investigate the effects of pretreatment and process parameters on neutral lipids, chlorophylls and carotenoids recovery on two species of Nannochloropsis. For Nannochloropsis maritima, a factorial experimental design was performed (P: [100-300] bar, T: [313-333] K). The highest extraction yields were obtained at the highest pressures and temperatures. Two drying modes, ring drying and air flow drying, were compared. Although total extraction yield and extraction kinetics were observed to be greater using air flow dried microalgae, extracts from this drying method resulted in partial degradation of glycerides in free fatty acids. Ring dried extracts maintained the same neutral lipid composition as the initial biomass. Based on these results, ring dried Nannochloropsis salina was extracted using supercritical CO2 at 333 K and both 300-400 bar. Extraction curves were modelled using the Sovova's mathematical model.
Adil Mouahid, Kanitta Seengeon, Mathieu Martino, Christelle Crampon, Avery Kramer, et al.. Selective extraction of neutral lipids and pigments from Nannochloropsis salina and Nannochloropsis maritima using supercritical CO2 extraction: Effects of process parameters and pre-treatment. Journal of Supercritical Fluids, 2020, 165, pp.104934. ⟨10.1016/j.supflu.2020.104934⟩. ⟨hal-02960133⟩
Sébastien Clercq, Adil Mouahid, Pèpe Gérard, Elisabeth Badens. Investigation of crystallization mechanisms for polymorphic and habit control from the Supercritical AntiSolvent process. Journal of Supercritical Fluids, 2018, 141, pp.29-38. ⟨10.1016/j.supflu.2017.11.025⟩. ⟨hal-02113962⟩ Plus de détails...
In this work, the Supercritical AntiSolvent (SAS) process has been used to generate micronized crystals of Sulfathiazole (STZ) from different organic solutions, namely acetone, acetonitrile, tetrahydrofuran and acetic acid. The flow rates of CO2 (2–21 g min−1) and of the organic solution (0.19–6 mL min−1), as well as STZ concentration in the organic solution (20–70% under the saturation), have been varied to identify the conditions leading to powders exhibiting only one polymorphic form. Pressure (10 MPa) and temperature (313 K) have been kept constant. In this paper, thermodynamic and hydrodynamic aspects are discussed so as to rationalize the obtained crystal characteristics and provide a new way to control the SAS process applied to drug pre-formulation. The influence of the organic solvent nature on both the polymorphic form and the habit of generated crystals, has been particularly discussed.
Sébastien Clercq, Adil Mouahid, Pèpe Gérard, Elisabeth Badens. Investigation of crystallization mechanisms for polymorphic and habit control from the Supercritical AntiSolvent process. Journal of Supercritical Fluids, 2018, 141, pp.29-38. ⟨10.1016/j.supflu.2017.11.025⟩. ⟨hal-02113962⟩
Adil Mouahid, Halima Bouanga, Christelle Crampon, Elisabeth Badens. Supercritical CO2 extraction of oil from Jatropha curcas: An experimental and modelling study. Journal of Supercritical Fluids, 2018, 141, pp.2-11. ⟨10.1016/j.supflu.2017.11.014⟩. ⟨hal-02114700⟩ Plus de détails...
Experimental and modelling investigations of supercritical CO 2 extraction of oil from Jatropha curcas were conducted at a pressure range of 20-40 MPa and a temperature range of 313-333 K at a CO 2 flow rate of 0.4 kg/ h. The extraction yield was estimated to be about 0.6 kg oil /kg biomass for all experiments. The model of broken and intact cells published by Sovová was applied. It was found that the extraction of type B was the most suited extraction type to apply as the experimental extraction curves exhibit three parts. Whatever the pressure and the temperature applied, the asymptotic yield at infinite time was found to be the same. At 20 MPa, increasing the temperature from 313 to 323 K enhances the extraction kinetics. A retrograde solubility zone was found at 30 and 40 MPa. The Jatropha curcas oil solubility in SC-CO 2 was determined and the data were modelled with the Chrastil equation.
Adil Mouahid, Halima Bouanga, Christelle Crampon, Elisabeth Badens. Supercritical CO2 extraction of oil from Jatropha curcas: An experimental and modelling study. Journal of Supercritical Fluids, 2018, 141, pp.2-11. ⟨10.1016/j.supflu.2017.11.014⟩. ⟨hal-02114700⟩
Elisabeth Badens, Yasmine Masmoudi, Adil Mouahid, Christelle Crampon. Current situation and perspectives in drug formulation by using supercritical fluid technology. Journal of Supercritical Fluids, 2018, 134, pp.274-283. ⟨10.1016/j.supflu.2017.12.038⟩. ⟨hal-02111546⟩ Plus de détails...
Supercritical fluid (SCF) technology has been applied to drug product development over the last thirty years and drug particle generation using SCFs appears to be an efficient way to carry out drug formulation which will form end-products meeting targeted specifications. This article presents an overview of drug particle design using SCFs from a rather different perspective than usual, more focused on chemical and process engineering aspects. The main types of existing processes are described in a concise way and a focus is put on how to choose the right operating conditions considering both thermodynamic and hydrodynamic aspects. It is shown that the operating conditions and parameters can be easily optimized so as to facilitate the further process scale-up. Furthermore, the new trends in particle generation using SCFs are introduced, related either to new types of drug medicines that are treated or new ways of process implementation methods.
Elisabeth Badens, Yasmine Masmoudi, Adil Mouahid, Christelle Crampon. Current situation and perspectives in drug formulation by using supercritical fluid technology. Journal of Supercritical Fluids, 2018, 134, pp.274-283. ⟨10.1016/j.supflu.2017.12.038⟩. ⟨hal-02111546⟩
Adil Mouahid, Cyril Dufour, Elisabeth Badens. Supercritical CO 2 extraction from endemic Corsican plants; comparison of oil composition and extraction yield with hydrodistillation method. Journal of CO2 Utilization, 2017, 20, pp.263 - 273. ⟨10.1016/j.jcou.2017.06.003⟩. ⟨hal-01596432⟩ Plus de détails...
Generally speaking, essential oils (EOs) and components of interest are extracted from plants using hydrodistillation (HD), steam distillation or organic solvent methods The Supercritical CO2 (SC-CO2) extraction technique is a good alternative to the three previously mentioned methods as it is able to be applied at temperatures close to ambient and shows no toxicity to humans or the environment. The aim of this study is to investigate the ability of supercritical CO2 extraction to extract bioactive components from four Corsican endemic plants: Rosmarinus officinalis, Juniperus communis ssp nana, Helichrysum italicum and Pistacia lentiscus. After the extracts were analyzed by gas chromatography, it would appear that SC-CO2 is the most adapted process for the extraction of such components of interest as verbenone, germacrene D, bornyl acetate, ferruginol, transcaryophyllene, elemol,gamma-cadinene, geraniol or beta-eudesmol in higher quantity. The SC-CO2 extraction curves were obtained using two models published by Sovova. These models give access to complementary information and help to estimate the values of some important data such as the possible maximal extraction yield for Helichrysum italicum and the end of the extraction period.
Adil Mouahid, Cyril Dufour, Elisabeth Badens. Supercritical CO 2 extraction from endemic Corsican plants; comparison of oil composition and extraction yield with hydrodistillation method. Journal of CO2 Utilization, 2017, 20, pp.263 - 273. ⟨10.1016/j.jcou.2017.06.003⟩. ⟨hal-01596432⟩
Adil Mouahid, Christelle Crampon, Sid-Ali Amine Toudji, Elisabeth Badens. Effects of high water content and drying pre-treatment on supercritical CO2 extraction from Dunaliella salina microalgae: Experiments and modelling. Journal of Supercritical Fluids, 2016, 116, pp.271-280. ⟨10.1016/j.supflu.2016.06.007⟩. ⟨hal-01461796⟩ Plus de détails...
This study investigates the effects due to the water content and to the drying pre-treatment on the extraction kinetics of solutes extracted from Dunaliella sauna microalgae by supercritical CO2. The extraction experiments were conducted at pressure range from 20 up to 40 MPa at a temperature of 333 K on crushed samples with water content varying from 5.5 up to 23 wt%. Three drying pre-treatments were applied: air flow drying at 318 K, air flow drying followed by additional microwave treatment and freeze-drying. A water content up to 23 wt% helps to extract a higher content of carotenoids (mainly beta-carotene) and does not restrict the extraction process. Sovova's mathematical model was applied and the parameters were adapted for the description of the extraction curves from samples containing high water content with a deviation between experimental and calculated values comprised between 1.1% and 4.3%. (C) 2016 Elsevier B.V. All rights reserved.
Adil Mouahid, Christelle Crampon, Sid-Ali Amine Toudji, Elisabeth Badens. Effects of high water content and drying pre-treatment on supercritical CO2 extraction from Dunaliella salina microalgae: Experiments and modelling. Journal of Supercritical Fluids, 2016, 116, pp.271-280. ⟨10.1016/j.supflu.2016.06.007⟩. ⟨hal-01461796⟩
Jean-Claude Bertrand, Pierre Doumenq, Remy Guyoneaud, Benoît Marrot, Fabrice Martin-Laurent, et al.. Applied microbial ecology and bioremediation. Environmental Microbiology : Fundamentals and Applications, Springer, Netherlands, 2015, Print ISBN : 978-94-017-9117-5 Online ISBN : 978-94-017-9118-2. ⟨10.1007/978-94-017-9118-2_16⟩. ⟨hal-02793466⟩ Plus de détails...
The large diversity of metabolic capacities and the high genetic plasticity of microorganisms allow them to degrade virtually all organic compounds of natural or anthropogenic (xenobiotics) origin including those that are sources of environmental pollution. Thus microorganisms are major actors to eliminate or alleviate pollutions in the environment. The natural attenuation processes due to microbial activities (biodegradation and/or biotransformation) as well as the possibilities of using microorganisms in preventive treatments and bioremediation – biostimulation, bioaugmentation, rhizostimulation, bioleaching, and bioimmobilization – are presented. The main methods for microbial treatment of pollution, the chemical structure and the origin of the major pollutants, as well as the mechanisms of degradation by microorganisms – on the basis of physiological, biochemical, and genetic approaches – are described. Examples of treatments are presented for urban wastewater (activated sludge, lagoons, and planted beds), solid wastes (aerobic treatment or composting, anaerobic treatment and methanization, discharges), gaseous effluents, pesticides, polychlorobiphenyls, and finally hydrocarbons and petroleum products in the marine environment.
Jean-Claude Bertrand, Pierre Doumenq, Remy Guyoneaud, Benoît Marrot, Fabrice Martin-Laurent, et al.. Applied microbial ecology and bioremediation. Environmental Microbiology : Fundamentals and Applications, Springer, Netherlands, 2015, Print ISBN : 978-94-017-9117-5 Online ISBN : 978-94-017-9118-2. ⟨10.1007/978-94-017-9118-2_16⟩. ⟨hal-02793466⟩
Adil Mouahid, Christelle Crampon, Sid-Ali Amine Toudji, Elisabeth Badens. Supercritical CO2 extraction of neutral lipids from microalgae: experiments and modelling. Journal of Supercritical Fluids, 2013, 77, pp.7-16. ⟨10.1016/j.supflu.2013.01.024⟩. ⟨hal-00993077⟩ Plus de détails...
The aim of this work is to show that the equations developed by Sovová, based on the concept of broken and intact cells for describing the supercritical extraction curves from plants and vegetables, can be applied for the modelling of the supercritical CO2 extraction curves obtained with microalgae. Experimental and modelling results of supercritical carbon dioxide extraction of lipids from four different microalgae: Nannochloropsis oculata, Cylindrotheca closterium, Chlorella vulgaris and Spirulina platensis, are presented. The experimental setup is a laboratory scale apparatus which allows an accurate monitoring of the mass loss of the microalgae sample during the extraction. The experimental data were obtained at a pressure of 40 MPa, a temperature of 333 K and CO2 flow rates from 0.3 to 0.5 kg/h. The extraction experiments were performed on samples having undergone different pretreatments: (i) after harvesting and centrifugation, microalgae were dried either by freeze-drying or air flow drying) and (ii) they were ground and sieved at different particle sizes (particle diameters ranging from 160 to 1000 μm). The complete extraction of neutral lipids was performed leading to mass losses up to 30% depending on the samples and on the operating conditions. Extracts were mainly composed of triglycerides (more than 90 wt% of extracts). The mathematical model published in 2005 and the simplified equations of extraction curves (using the characteristic times characterizing each extraction step) published in 2012 by Sovová were chosen to fit the experimental data. Among the hypotheses proposed by Sovovà, we considered that the flow pattern of supercritical CO2 in the extraction autoclave was plug flow and the extraction process was supposed to occur with negligible solute-matrix interactions. The adjustable parameters were calculated by minimizing the sum of least squares between experimental and calculated values of the extraction yield. Good agreement between the two models and our experimental measurements was obtained. The average absolute relative deviation ranges between 0.5 and 10.2%.
Adil Mouahid, Christelle Crampon, Sid-Ali Amine Toudji, Elisabeth Badens. Supercritical CO2 extraction of neutral lipids from microalgae: experiments and modelling. Journal of Supercritical Fluids, 2013, 77, pp.7-16. ⟨10.1016/j.supflu.2013.01.024⟩. ⟨hal-00993077⟩
Christelle Crampon, Adil Mouahid, Sid-Ali Amine Toudji, Olivier Lépine, Elisabeth Badens. Influence of pretreatment on supercritical CO2 extraction from Nannochloropsis oculata. Journal of Supercritical Fluids, 2013, 79, pp.337-344. ⟨10.1016/j.supflu.2012.12.022⟩. ⟨hal-00993082⟩ Plus de détails...
This work demonstrates that supercritical carbon dioxide extraction is efficient for the complete recovery of neutral lipids from microalgae with a water content up to 20 wt%, allowing thus a further full characterization of this oil. This is a first useful step in the framework of lipid production from microalgae either for nutraceutical, food or for energy applications. This study is particularly focused on the influence of the pretreatments upon extraction kinetics and yields. This study proposes a complete study at laboratory scale (10 g per batch of dry biomass) of the influence of pretreatments (type of drying and grinding) and of water content on the extraction kinetics and yields as well as on the oil composition in terms of lipidic classes and profiles. Two drying pretreatments (drying under air flow and freeze-drying) applied on Nannochloropsis oculata were studied. Extraction experiments were carried out at 40 MPa, 333 K, with a carbon dioxide flow rate of 0.5 kg h−1 and for different granulometries. Results showed that drying under air flow at 308 K is the most adequate pretreatment leading to the most rapid kinetics. Whatever the pretreatment used, the extracted oil contains more than 90 wt% of triglycerides and does not contain phospholipids. As expected, the smaller the particle size, the faster the extraction kinetics. Finally, an increase in the biomass water content up to 20 wt% increases the global extraction kinetics (extraction of both water and oil) but appears to have no influence on oil extraction yields. Moreover, the extraction of neutral lipids happens to be complete for a CO2/charge mass ratio ranging from 30 to 130 depending on the operating conditions and on the characteristics of the treated biomass. Finally, pilot scale experiments were performed with batches up to 15 kg in order to evaluate the influence of pressure and particle size on the extraction kinetics and yields. Extracts obtained at 333 K with operating pressures of 50 MPa and 85 MPa have similar compositions and do not contain phospholipids.
Christelle Crampon, Adil Mouahid, Sid-Ali Amine Toudji, Olivier Lépine, Elisabeth Badens. Influence of pretreatment on supercritical CO2 extraction from Nannochloropsis oculata. Journal of Supercritical Fluids, 2013, 79, pp.337-344. ⟨10.1016/j.supflu.2012.12.022⟩. ⟨hal-00993082⟩
Nan Wu, Yvan Wyart, Jérôme Rose, B Angeletti, Philippe Moulin. Influence of wastewater treatment from microelectronics industry on concentrations and partitioning of elements in a river. Advances in Biomedical Engineering, 2012, 7, pp.121-129. ⟨hal-00997222⟩ Plus de détails...
The influence of wastewater treatment plant (WWTP) effluents from a microelectronic industrial zone (IZ) on natural waters (Arc river) was investigated. Surface water samples from upstream, downstream, and WWTP effluents were analyzed by distinguishing 'background' geogenic sources from anthropological sources. Amongst the five elements (Si, V, Se, Sr, U) analyzed, Si increased in concentration (in raw water) in the downstream compared to upstream, which indicated a discharge of Si from anthropological sources (IZ site) into receiving waters, even if no contaminated levels were reached. Meanwhile, the anthropogenic inputs have an important influence on the distribution of elemental partitioning among large particulates (>18 μm), particulates (0.22-18 μm), colloidal/nanoparticle (10 kDa-0.22 μm) and truly dissolved fractions (<10 kDa), which were distinguished by filter cartridges and membranes with decreasing cut-offs.
Nan Wu, Yvan Wyart, Jérôme Rose, B Angeletti, Philippe Moulin. Influence of wastewater treatment from microelectronics industry on concentrations and partitioning of elements in a river. Advances in Biomedical Engineering, 2012, 7, pp.121-129. ⟨hal-00997222⟩
Philippe Moulin, T Allouane, Laure Latapie, C. Raufast, F Charbit. Treatment and valorisation of an industrial effluent by pervaporation. Journal of Membrane Science, 2002, 197 (1-2), pp.103 - 115. ⟨10.1016/S0376-7388(01)00603-2⟩. ⟨hal-01916615⟩ Plus de détails...
Philippe Moulin, T Allouane, Laure Latapie, C. Raufast, F Charbit. Treatment and valorisation of an industrial effluent by pervaporation. Journal of Membrane Science, 2002, 197 (1-2), pp.103 - 115. ⟨10.1016/S0376-7388(01)00603-2⟩. ⟨hal-01916615⟩