Pierre BOIVIN
Chargé de Recherche CNRS - HDR
équipe Thermodynamique Ondes Numérique Interfaces Combustion
Médaille de bronze du CNRS - 2024 pour ses avancées théoriques et pratiques sur la combustion de l’hydrogène

Activités

Modélisations de jets liquides

Publications scientifiques au M2P2

  • Seyed Ali Hosseini, Pierre Boivin, Dominique Thévenin, Ilya Karlin. Lattice Boltzmann methods for combustion applications. Progress in Energy and Combustion Science, 2024, 102, pp.101140. ⟨10.1016/j.pecs.2023.101140⟩. ⟨hal-04412786⟩ Plus de détails...
  • Mostafa Taha, Song Zhao, Aymeric Lamorlette, Jean-Louis Consalvi, Pierre Boivin. Large eddy simulation of fire-induced flows using Lattice-Boltzmann methods. International Journal of Thermal Sciences, 2024, 197, pp.108801. ⟨10.1016/j.ijthermalsci.2023.108801⟩. ⟨hal-04338538⟩ Plus de détails...
  • G. Farag, P. Boivin, P. Sagaut. Linear interaction approximation for shock/disturbance interaction in a Noble–Abel stiffened gas. Shock Waves, 2023, ⟨10.1007/s00193-023-01131-8⟩. ⟨hal-04097657⟩ Plus de détails...
  • Song Zhao, Karthik Bhairapurada, Muhammad Tayyab, Renaud Mercier, Pierre Boivin. Lattice-Boltzmann modelling of the quiet and unstable PRECCINSTA burner modes. Computers and Fluids, 2023, pp.105898. ⟨10.1016/j.compfluid.2023.105898⟩. ⟨hal-04085625⟩ Plus de détails...
  • Benoît Péden, Julien Carmona, Pierre Boivin, Schmitt Thomas, Bénédicte Cuenot, et al.. Numerical assessment of Diffuse-Interface method for air-assisted liquid sheet simulation. Computers and Fluids, 2023, 266, pp.106022. ⟨10.1016/j.compfluid.2023.106022⟩. ⟨hal-04244347⟩ Plus de détails...
  • Pierre Boivin, Marc Le Boursicaud, Alejandro Millán-Merino, Said Taileb, Josué Melguizo-Gavilanes, et al.. Hydrogen ignition and safety. Efstathios-Al. Tingas. Hydrogen for Future Thermal Engines, Springer International Publishing, pp.161-236, 2023, Green Energy and Technology, 978-3-031-28411-3. ⟨10.1007/978-3-031-28412-0_5⟩. ⟨hal-04244414⟩ Plus de détails...
  • Marc Le Boursicaud, Song Zhao, Jean-Louis Consalvi, Pierre Boivin. An improved passive scalar model for hydrogen hazardous ignition prediction. Combustion and Flame, 2023, 256, pp.112938. ⟨10.1016/j.combustflame.2023.112938⟩. ⟨hal-04169558⟩ Plus de détails...
  • Gauthier Wissocq, Said Taileb, Song Zhao, Pierre Boivin. A hybrid lattice Boltzmann method for gaseous detonations. Journal of Computational Physics, 2023, 494, pp.112525. ⟨10.1016/j.jcp.2023.112525⟩. ⟨hal-04244340⟩ Plus de détails...
  • Said Taileb, Alejandro Millán-Merino, Song Zhao, Pierre Boivin. Lattice-Boltzmann modeling of lifted hydrogen jet flames: A new model for hazardous ignition prediction. Combustion and Flame, 2022, 245, pp.112317. ⟨10.1016/j.combustflame.2022.112317⟩. ⟨hal-03796395⟩ Plus de détails...
  • Alejandro Millán-Merino, Said Taileb, Pierre Boivin. A new method for systematic 1-step chemistry reduction applied to hydrocarbon combustion. Proceedings of the Combustion Institute, 2022, ⟨10.1016/j.proci.2022.08.052⟩. ⟨hal-03825847⟩ Plus de détails...
  • Pierre Boivin, Yves Connier, Bertrand Dousteyssier, Didier Miallier, Élise Nectoux, et al.. Protohistoire de la moyenne montagne auvergnate : le cas du versant oriental du Cézallier à l’âge du Bronze et au Ier âge du Fer, premier état des lieux. Frédéric Surmely. Archéologie en milieu de montagne dans la région Auvergne-Rhône-Alpes : Actes de la table ronde de Clermont-Ferrand (6 décembre 2019), Presses universitaires Blaise Pascal, pp.137-160, 2022, Terra Mater, 9782383770046. ⟨hal-04123826⟩ Plus de détails...
  • Adil Mouahid, Pierre Boivin, Suzanne Diaw, Elisabeth Badens. Widom and extrema lines as criteria for optimizing operating conditions in supercritical processes. Journal of Supercritical Fluids, 2022, 186, pp.105587. ⟨10.1016/j.supflu.2022.105587⟩. ⟨hal-03797377⟩ Plus de détails...
  • Mostafa Taha, Song Zhao, Aymeric Lamorlette, Jean-Louis Consalvi, Pierre Boivin. Lattice-Boltzmann modeling of buoyancy-driven turbulent flows. Physics of Fluids, 2022, ⟨10.1063/5.0088409⟩. ⟨hal-03661928⟩ Plus de détails...
  • Guanxiong Wang, Song Zhao, Pierre Boivin, Eric Serre, Pierre Sagaut. A new hybrid lattice-Boltzmann method for thermal flow simulations in low-Mach number approximation. Physics of Fluids, 2022, 34 (4), pp.046114. ⟨10.1063/5.0091517⟩. ⟨hal-03796386⟩ Plus de détails...
  • Karthik Bhairapurada, Bruno Denet, Pierre Boivin. A Lattice-Boltzmann study of premixed flames thermo-acoustic instabilities. Combustion and Flame, 2022, 240, pp.112049. ⟨hal-03582162⟩ Plus de détails...
  • Guanxiong Wang, Song Zhao, Pierre Boivin, Eric Serre, Pierre Sagaut. A new hybrid Lattice-Boltzmann method for thermal flow simulations in low-Mach number approximation. Physics of Fluids, 2022, Physics of fluids, 34 (046114). ⟨hal-03636905⟩ Plus de détails...
  • Alejandro Millán-Merino, Said Taileb, Pierre Boivin. A new method for systematic 1-step chemistry reduction applied to hydrocarbon combustion. Proceedings of the Combustion Institute, In press, ⟨10.1016/j.proci.2022.08.052⟩. ⟨hal-04063894⟩ Plus de détails...
  • Nicolas Godinaud, Pierre Boivin, Pierre Freton, Jean-Jacques Gonzalez, Frédéric Camy-Peyret. Development of a new OpenFOAM solver for plasma cutting modelling. Computers and Fluids, 2022, ⟨10.1016/j.compfluid.2022.105479⟩. ⟨hal-03661919⟩ Plus de détails...
  • Guillaume Martin, Sébastien Gaime, Pierre Boivin, Bertrand Dousteyssier, Didier Miallier, et al.. Production et diffusion des sarcophages en trachyte de la chaîne des Puys (Massif central, France) au premier Moyen Âge (Ve-IXe s.). Yves Henigfeld; Édith Peytremann. Un monde en mouvement : la circulation des personnes, des biens et des idées à l’époque mérovingienne (Ve-VIIIe siècle), AFAM, pp.241-258, 2022, Mémoires de l’Association française d’Archéologie mérovingienne ; Tome XXXVII, 979-10-90282-02-5. ⟨hal-04128988⟩ Plus de détails...
  • Gauthier Wissocq, Thomas Coratger, Gabriel Farag, Song Zhao, Pierre Boivin, et al.. Restoring the conservativity of characteristic-based segregated models: application to the hybrid lattice Boltzmann method. Physics of Fluids, 2022, 34 (4), pp.046102. ⟨10.1063/5.0083377⟩. ⟨hal-03627520⟩ Plus de détails...
  • T. Coratger, G. Farag, S. Zhao, Pierre Boivin, P. Sagaut. Large-eddy lattice-Boltzmann modeling of transonic flows. Physics of Fluids, 2021, 33 (11), pp.115112. ⟨10.1063/5.0064944⟩. ⟨hal-03424286⟩ Plus de détails...
  • Pierre Boivin, M. Tayyab, S. Zhao. Benchmarking a lattice-Boltzmann solver for reactive flows: Is the method worth the effort for combustion?. Physics of Fluids, 2021, 33 (7), pp.071703. ⟨10.1063/5.0057352⟩. ⟨hal-03276189⟩ Plus de détails...
  • G. Farag, S. Zhao, G. Chiavassa, Pierre Boivin. Consistency study of Lattice-Boltzmann schemes macroscopic limit. Physics of Fluids, 2021, 33 (3), pp.037101. ⟨10.1063/5.0039490⟩. ⟨hal-03160898⟩ Plus de détails...
  • M. Tayyab, S. Zhao, Pierre Boivin. Lattice-Boltzmann modeling of a turbulent bluff-body stabilized flame. Physics of Fluids, 2021, 33 (3), pp.031701. ⟨10.1063/5.0038089⟩. ⟨hal-03160901⟩ Plus de détails...
  • Isabelle Cheylan, Song Zhao, Pierre Boivin, Pierre Sagaut. Compressible pressure-based Lattice-Boltzmann applied to humid air with phase change. Applied Thermal Engineering, 2021, pp.116868. ⟨10.1016/j.applthermaleng.2021.116868⟩. ⟨hal-03180596⟩ Plus de détails...
  • T. Lafarge, Pierre Boivin, N. Odier, B. Cuenot. Improved color-gradient method for lattice Boltzmann modeling of two-phase flows. Physics of Fluids, 2021, 33 (8), pp.082110. ⟨10.1063/5.0061638⟩. ⟨hal-03324224⟩ Plus de détails...
  • G. Farag, T. Coratger, G. Wissocq, S. Zhao, Pierre Boivin, et al.. A unified hybrid lattice-Boltzmann method for compressible flows: Bridging between pressure-based and density-based methods. Physics of Fluids, 2021, 33 (8), pp.086101. ⟨10.1063/5.0057407⟩. ⟨hal-03324229⟩ Plus de détails...
  • S. Zhao, G. Farag, Pierre Boivin, P. Sagaut. Toward fully conservative hybrid lattice Boltzmann methods for compressible flows. Physics of Fluids, 2020, 32 (12), pp.126118. ⟨10.1063/5.0033245⟩. ⟨hal-03087980⟩ Plus de détails...
  • G. Farag, S. Zhao, T. Coratger, Pierre Boivin, G. Chiavassa, et al.. A pressure-based regularized lattice-Boltzmann method for the simulation of compressible flows. Physics of Fluids, 2020, 32 (6), pp.066106. ⟨10.1063/5.0011839⟩. ⟨hal-02885427⟩ Plus de détails...
  • Xi Deng, Pierre Boivin. Diffuse interface modelling of reactive multi-phase flows applied to a sub-critical cryogenic jet. Applied Mathematical Modelling, 2020, ⟨10.1016/j.apm.2020.04.011⟩. ⟨hal-02561937⟩ Plus de détails...
  • Muhammad Tayyab, Basile Radisson, Christophe Almarcha, B. Denet, Pierre Boivin. Experimental and numerical Lattice-Boltzmann investigation of the Darrieus-Landau instability. Combustion and Flame, 2020, 221, pp.103-109. ⟨10.1016/j.combustflame.2020.07.030⟩. ⟨hal-02921517⟩ Plus de détails...
  • M. Tayyab, S. Zhao, Y. Feng, Pierre Boivin. Hybrid regularized Lattice-Boltzmann modelling of premixed and non-premixed combustion processes. Combustion and Flame, 2020, 211, pp.173-184. ⟨10.1016/j.combustflame.2019.09.029⟩. ⟨hal-02346556⟩ Plus de détails...
  • Yongliang Feng, Pierre Boivin, Jérome Jacob, Pierre Sagaut. Hybrid recursive regularized lattice Boltzmann simulation of humid air with application to meteorological flows. Physical Review E , 2019. ⟨hal-02265484⟩ Plus de détails...
  • G. Farag, Pierre Boivin, P. Sagaut. Interaction of two-dimensional spots with a heat releasing/absorbing shock wave: linear interaction approximation results. Journal of Fluid Mechanics, 2019, 871, pp.865-895. ⟨10.1017/jfm.2019.324⟩. ⟨hal-02142649⟩ Plus de détails...
  • Xi Deng, Pierre Boivin, Feng Xiao. A new formulation for two-wave Riemann solver accurate at contact interfaces. Physics of Fluids, 2019, 31 (4), pp.046102. ⟨10.1063/1.5083888⟩. ⟨hal-02100764⟩ Plus de détails...
  • Pierre Boivin, M.A. Cannac, O. Le Metayer. A thermodynamic closure for the simulation of multiphase reactive flows. International Journal of Thermal Sciences, 2019, 137, pp.640-649. ⟨hal-01981954⟩ Plus de détails...
  • Yongliang Feng, Pierre Boivin, Jérome Jacob, Pierre Sagaut. Hybrid recursive regularized thermal lattice Boltzmann model for high subsonic compressible flows. Journal of Computational Physics, 2019, 394, pp.82-99. ⟨hal-02142837⟩ Plus de détails...
  • Yongliang Feng, Muhammad Tayyab, Pierre Boivin. A Lattice-Boltzmann model for low-Mach reactive flows. Combustion and Flame, 2018, 196, pp.249 - 254. ⟨10.1016/j.combustflame.2018.06.027⟩. ⟨hal-01832640⟩ Plus de détails...
  • Pierre Boivin, Forman A. Williams. Extension of a wide-range three-step hydrogen mechanism to syngas. Combustion and Flame, 2018, 196, pp.85-87. ⟨10.1016/j.combustflame.2018.05.034⟩. ⟨hal-02112081⟩ Plus de détails...
  • Alexandre Chiapolino, Pierre Boivin, Richard Saurel. A simple phase transition relaxation solver for liquid-vapor flows. International Journal for Numerical Methods in Fluids, 2017, 83 (7), pp.583-605. ⟨10.1002/fld.4282⟩. ⟨hal-01359203⟩ Plus de détails...
  • Alexandre Chiapolino, Pierre Boivin, Richard Saurel. A simple and fast phase transition relaxation solver for compressible multicomponent two-phase flows. Computers and Fluids, 2017, 150, pp.31 - 45. ⟨10.1016/j.compfluid.2017.03.022⟩. ⟨hal-01502389⟩ Plus de détails...
  • Pierre Boivin, A.L. Sánchez, F.A. Williams. Analytical prediction of syngas induction times. Combustion and Flame, 2017, 176, pp.489 - 499. ⟨10.1016/j.combustflame.2016.11.008⟩. ⟨hal-01417104⟩ Plus de détails...
  • Richard Saurel, Olivier Le Métayer, Pierre Boivin. From Cavitating to Boiling Flows. d'Agostino L., Salvetti M.; CISM International Centre for Mechanical Sciences (Courses and Lectures). Cavitation Instabilities and Rotordynamic Effects in Turbopumps and Hydroturbines , 575, Springer pp.259-282 2017, 978-3-319-49717-4. ⟨hal-01678361⟩ Plus de détails...
  • Richard Saurel, Pierre Boivin, Olivier Le Métayer. A general formulation for cavitating, boiling and evaporating flows. Computers and Fluids, 2016, 128, pp.53-64. ⟨10.1016/j.compfluid.2016.01.004⟩. ⟨hal-01277179⟩ Plus de détails...
  • Richard Saurel, Pierre Boivin, Olivier Le Métayer. A general formulation for cavitating, boiling and evaporating flows. Computers and Fluids, 2016, 128, pp.53-64. ⟨10.1016/j.compfluid.2016.01.004⟩. ⟨hal-01277179⟩ Plus de détails...