Recherche

2 axes thématiques, 6 équipes de recherche, 2 sites

L'originalité du M2P2 réside dans ses thèmes de recherche dans les domaines de la Mécanique des Fluides Numérique et du Génie des Procédés. La recherche en mécanique et modélisation est associée à un fort développement méthodologique autour de codes de calcul pour la simulation d'écoulements naturels et industriels. Dans le domaine du génie des procédés, la recherche concerne le développement de procédés innovants ainsi que l'étude des verrous mis en jeu dans ces procédés dans le cadre d'une forte activité contractuelle.
Suite...

6 équipes de recherche sur deux sites

Publications

  • Mostafa Taha, Song Zhao, Aymeric Lamorlette, Jean-Louis Consalvi, Pierre Boivin. Lattice-Boltzmann modeling of buoyancy-driven turbulent flows. Physics of Fluids, American Institute of Physics, 2022, ⟨10.1063/5.0088409⟩. ⟨hal-03661928⟩ Plus de détails...
  • M. Nguyen, J. Boussuge, P. Sagaut, J. Larroya-Huguet. Large eddy simulation of a thermal impinging jet using the lattice Boltzmann method. Physics of Fluids, American Institute of Physics, 2022, 34 (5), pp.055115. ⟨10.1063/5.0088410⟩. ⟨hal-03669901⟩ Plus de détails...
  • Shang-Gui Cai, Abdellatif Ouahsine, Yannick Hoarau. Moving immersed boundary method for fluid–solid interaction. Physics of Fluids, American Institute of Physics, 2022, 34 (5), pp.053307. ⟨10.1063/5.0088302⟩. ⟨hal-03695023⟩ Plus de détails...
  • Rouae Ben Dhia, Nils Tilton, Denis Martinand. Impact of osmotic pressure on the stability of Taylor vortices. Journal of Fluid Mechanics, Cambridge University Press (CUP), 2022, 933, pp.A51. ⟨10.1017/jfm.2021.1101⟩. ⟨hal-03533753⟩ Plus de détails...
  • Karthik Bhairapurada, Bruno Denet, Pierre Boivin. A Lattice-Boltzmann study of premixed flames thermo-acoustic instabilities. Combustion and Flame, Elsevier, 2022, 240, pp.112049. ⟨hal-03582162⟩ Plus de détails...
x >

Actualités scientifiques

22 Juin 2022 - Simulation numérique d'interaction fluide structure : application à la propulsion / Soutenance de thèse de Jérémie LABASSE
Doctorant : Jérémie LABASSE

Date : 22 juin 2022 à 14h00,   Centrale Marseille 38 Rue Frédéric Joliot Curie ; 13013 Marseille ; Amphi 3 

Résumé : Dans le contexte de la modélisation de la propulsion bio-inspirée, le tangage et le pilonnement sont souvent considérés comme des archétypes des mouvements observés et un des objectifs des recherches dans ce domaine est d'établir des lois de propulsion, ce travail de thèse s'insérant dans cette thématique. Dans cet objectif, tout d'abord une plaque d'épaisseur négligeable en mouvement de tangage dans un écoulement uniforme est considérée. Ce système fluide-structure est abordé numériquement utilisant l'environnement numérique OpenFOAM. Cette boîte à outils permet de gérer le mouvement de la plaque, le déplacement du maillage associé étant obtenu comme solution d'une équation de Laplace avec une variable de diffusivité. Les résultats des simulations numériques et notamment les efforts générés par l'interaction fluide-structure sont validés par comparaison avec des données existantes, pour un nombre de Reynolds de 2000 et en faisant varier les paramètres du tangage. Une loi de propulsion est proposée et confrontée à des lois existantes dans la littérature. Dans un deuxième temps un objet profilé (un profil NACA0018) en mouvement de pilonnement simple puis en mouvement couplé tangage-pilonnement est étudié. Pour ces mouvements à grandes amplitudes une superposition de maillage est utilisée lors de la résolution numérique, cette approche étant connue sous le nom de la méthode Chimera. À partir des données des simulations, pour un nombre de Reynolds de 5 10^4 et pour une grande gamme de paramètres, des lois de propulsions sont proposées pour le pilonnement simple ainsi que pour le couplage tangage-pilonnement. Enfin un dispositif de propulsion cycloïdale développé par l'Institut de Recherche de l'Ecole Navale (IRENav) consistant en trois pales en mouvement de rotation-tangage est abordé numériquement, pour des gammes de paramètres identiques aux expériences, mettant en oeuvre la méthode de superposition de maillage pour les trois objets en mouvement. Les simulations des efforts générés dans cette configuration s'avèrent très proches des données expérimentales obtenues à l'IRENav. Aussi, il est montré que la loi proposée pour des mouvements de tangage-pilonnement reste pertinente pour prédire les efforts développés par le dispositif. 

Jury :
Directeur de these M. Uwe EHRENSTEIN Aix Marseille Université / M2P2
Rapporteur Mme Annie-Claude BAYEUL-LAINÉ Arts et Métiers / LMFL
Rapporteur M. Sylvain GUILLOU Université de Caen Normandie
Examinateur Mme Annie LEROY Ecole de l'Air et de l'Espace
Président M. Jacques-André ASTOLFI École Navale Brest
14 Juin 2022 - Développement et optimisation de deux procédés supercritiques d'élaboration de nanoliposomes pour l'encapsulation de siARN / Soutenance de thèse de Mathieu MARTINO
Doctorant : Mathieu MARTINO

Date : mardi 14 juin 2022 à 14h00,  Technopôle de l'Arbois, Avenue Louis Philibert ; Amphithéâtre du Cerege 

Résumé : L'un des principaux objectifs en thérapie est de trouver un excipient permettant une protection des molécules thérapeutiques lors de leurs administrations. L'ensemble de ces enjeux ont conduit à l'émergence de nouvelles techniques d'élaboration de système de délivrance de médicaments limitant l'utilisation de solvants organiques. Ainsi, plusieurs procédés utilisant des fluides supercritiques ont été développés. La formulation de médicaments à l'aide de procédé utilisant des fluides supercritiques, notamment le dioxyde de carbone supercritique (CO2-SC), présente plusieurs avantages, comme la réduction de la quantité de solvant organique nécessaire.En parallèle, de nombreuses études ont été réalisées sur l'utilisation des liposomes comme vecteurs d'encapsulation. Les liposomes sont des vésicules biodégradables composées de phospholipides, avec des structures proches des membranes cellulaires avec lesquelles ils peuvent fusionner pour délivrer le médicament encapsulé. Cette fusion liposome/cellule permet l'administration de médicaments. Par conséquent, les liposomes se comportent comme des agents protecteurs pour les substances actives pharmaceutiques encapsulées une fois administrées empêchant la dégradation enzymatique et l'élimination du médicament par le système immunitaire. Néanmoins, une limitation pour leur utilisation comme vecteurs de médicaments pour la thérapie génique est leur taille. En effet, la taille des particules est une caractéristique clé pour l'internalisation cellulaire d'une vésicule/particule. Une particule d'une taille allant jusqu'à 5 microns peut subir une internalisation cellulaire, mais le processus est plus rapide pour les particules d'une taille inférieure à 150 nm. Il y a donc un réel intérêt à former des liposomes ou nanoliposomes de taille submicronique afin d'améliorer l'internalisation cellulaire et limiter la dégradation. Dans ce contexte, plusieurs études ont été menées sur l'encapsulation de médicaments dans des liposomes et sur l'utilisation de procédés supercritiques. Par conséquent, les avantages combinés de l'encapsulation par liposomes et des procédés à fluide supercritique ont permis le développement de petites vésicules biomimétiques et biodégradables pour l'encapsulation de médicaments en utilisant un procédé écologique. L'objectif de ces travaux de thèse est de mettre au point deux procédés d’élaboration de nanoliposome en milieu supercritique en vue de l'encapsulation de siARN pour le traitement de la progéria. Le premier procédé développé est un procédé batch avec dépressurisation à pression constante. Ce procédé permet de former des liposomes avec des diamètres inférieur à 150 nm. L'efficacité d'encapsulation des liposomes formés à partir du procédé batch à été évaluée avec une molécule test : la lutéine. Des efficacités d’encapsulation allant jusqu'à 91,9 % ont été observées. Le second procédé développé est un procédé milli-fluidique en continu. Ce procédé présente l'avantage d'avoir une taille plus compacte et de formuler de faible quantité de suspensions liposomales (nécessaire pour l'élaboration de formulation liposome/ARN). Tout comme le procédé batch, ce procédé milli-fluidique permet d'élaborer des liposomes de taille inférieur à 150 nm. Un étude d'optimisation sur les conditions opératoires a été menées sur les deux procédés afin d’évaluer l'influence de la pression, de la température et de la concentration en phospholipides dans la solution d'alimentation sur les propriétés des liposomes formés. Cette étude montre que le paramètre clé pour le contrôle des propriétés des liposomes est la concentration en phospholipides. Enfin, des formulations liposomes/siARN ont été élaborées avec le procédé milli-fluidique. Les siARN encapsulés sont des ARN utilisés dans le traitement de la progéria. Des essais en cultures cellulaires ont montré une diminution de la lamine (but recherché) lors de l'utilisation des suspensions liposomales formés par le procédé milli-fluidique développé. 

Jury
CoDirecteur de these Mme Elisabeth BADENS Aix Marseille Université
CoDirecteur de these M. Adil MOUAHID Aix Marseille Université
Rapporteur Mme Raphaëlle SAVOIRE IPB / ENSCBP CBMN UMR5248 (CNRS/IPB/Université de Bordeaux) Equipe Clip’in
Rapporteur Mme Nora VENTOSA Institut de ciencia de materials de barcelona ICMAB CSIC- NANOMOL-CIBER-BBN
Examinateur M. Joseph CICCOLINI COMPO: COMputational Pharmacology in Oncology SMARTc : Simulation & Modelling: Adaptive Response for Therapeutics in Cancer Center for Research on Cancer of Marseille (CRCM): UMR Inserm 1068, CNRS UMR 7258, Aix Marseille Université U105, Institut Paoli Calmettes Inria Centre de Recherche Sophia Méditerranée & APHM Laboratoire de Pharmacocinétique, Faculté de Pharmacie,
Examinateur Mme Géraldine PIEL Laboratoire de Technologie Pharmaceutique & Biopharmacie (LTPB) Centre Interdisciplinaire de Recherche sur le Médicament (CIRM) Université de Liège
15 Mars 2022 - Influence of Radiative Effects on Buoyancy-induced Flows in High-pressure Compressor Inter-disk Cavities / PhD defense Ahmed HODAIB
Doctorant : Ahmed HODAIB 

Date de soutenance : le 15 mars 2022 à 15h00 ; Amphi 3 Centrale Marseille

Abstract  : In aircraft engines, a secondary air flow is obtained from an intermediate compressor stage, to be used to cool the turbine disks. This flow passes through the high-pressure compressor inter-disk cavities (Farthing et al., ASME J. Turbomach., 1992). A better understanding of this complex buoyancy-induced flow is essential to determine the thermal stresses, the radial growth of the blades, due to thermal expansion, and the temperature rise of the air used for cooling. Besides, to be able to determine the optimum clearance between the rotating blades and the surrounding casing, in order to improve the engine performance. This convective flow is not only unsteady and three-dimensional, it is unstable. Due to high temperature differences, the flow and heat transfer give rise to a strongly conjugate problem: the flow is affected by the temperature of the disks, and vice versa (Owen & Long, ASME J. Turbomach., 2015). The compressible Navier-Stokes equations, coupled with the energy equation and perfect gas law, are solved in the framework of the Low Mach Number (LMN) approximation, allowing a reduction of computational costs by filtering the high-speed waves while keeping a good accuracy by considering the compressibility effects (Motheau & Abraham, J. Comput. Phys., 2016). A fourth-order compact spatial discretisation scheme combined with parallelised Fourier method is implemented on a staggered grid. A second-order semi-implicit scheme is introduced for time integration. A two-step algorithm is developed for the solution of the LMN equations. In a first step, the thermodynamic variables are calculated through an iterative process, and used to compute the velocity divergence. In a second step, the variable density continuity and momentum equations are solved using a projection-type method. A parallelized iterative domain decomposition technique is implemented for the simulation of the three-dimensional flow and heat transfer in a T-shape model cavity. The parallelisation of the resulting computational code is performed through a hybrid MPI/OpenMP approach. Spatial and temporal accuracies of the proposed algorithm are checked on a manufactured solution in a simplified configuration. Then, the algorithm is applied to study the flow and heat transfer in an idealised compressor inter-disk cavity, while considering conduction inside the walls, to allow for a more accurate thermal balance. The results are compared with data available in the literature based on local Nusselt numbers. A parametric study is done for a range of the two main parameters governing the flow, according to Farthing et al. (ASME J. Turbomach., vol. 114, pp. 229-236 and pp. 237-246, 1992): the temperature difference and the Rossby number. To include surface radiation exchanges, the discrete radiative heat transfer equation is solved based on the zonal method. The adequacy of the proposed Low Mach number approach is shown, compared to Boussinesq approximation. Moreover, the validity of neglecting the gravitational acceleration with respect to the centrifugal acceleration in the equations is discussed. Then, the definition of an effective Rayleigh number is established, where both centrifugal and gravitational accelerations are taken into account in the buoyancy terms. The results reveal that the flow exhibits a Poiseuille-Rayleigh-Bénard-like instability, and that this effective Rayleigh number governs the flow structure and the heat transfer in the whole cavity, and hence the stability of the flow. In the end, it is shown that radiative exchanges become more significant the more we get closer to the inner radius of the cavity, in agreement with the results reported by Tang & Owen (ASME J. Turbomach., 2021). It is observed that the temperature profiles at the upstream and downstream disks approach each other, when radiation is considered, where the upstream disk temperatures increase. 

Jury
Directeur de these M. Anthony RANDRIAMAMPIANINA Aix Marseille Université 
Rapporteur M. Gary D. LOCK University of Bath, UK
Rapporteur M. Artur TYLISZCZAK Czestochowa University of Technology, Poland
Président  M. Pierre SAGAUT Aix-Marseille Université
Examinateur M. Innocent MUTABAZI Normandie Université
Examinateur M. Stéphane ABIDE Université de Perpignan Via Domitia
CoDirecteur de these Mme Isabelle RASPO Aix-Marseille Université
CoDirecteur de these M. Stéphane VIAZZO Aix-Marseille-Université
4 Février 2022 - Lattice-Boltzmann methods for compressible flows / PhD defense Gabriel Farag
Doctorant : Fabriel FARAG

Date de soutenance : le 4 février 2022 à 14h00 ; Amphi 3 Centrale Marseille

Abstract  : Since the late 1970's, computational fluid dynamics solvers became essentials due to increasingly complex applications requiring fluid solutions. The small scales necessary for industrial applications often need a very fine grid or very small timestep. This dramatically increases the computational cost of nowadays simulations. To design more computationally efficient solvers, a popular approach is to use Lattice-Boltzmann methods. Originating from the kinetic theory of gases, this method have gained a tremendous popularity among fluid dynamicists due to its cheap and easily implemented collide & stream algorithm. However, its intrinsic assumptions confines classical Lattice-Boltzmann solvers to weakly compressible flows. Yet, some compressible models have been proposed. The purpose of this manuscript is to improve the robustness as well as accuracy of compressible Lattice-Boltzmann models. To this end, the Lattice-Boltzmann method is fully reinterpreted as a numerical scheme. This allows a straightforward and parsimonious derivation of the equivalent Navier-Stokes-Fourier system using the sole assumption of a negligible timestep. Using this formalism, the order of accuracy is shown to depend on the collision kernel, as well as the mechanical constitutive model. Various models are investigated and we show that the Knudsen number is not the sole parameter controlling the consistency with the Navier-Stokes-Fourier model. Additionally, capabilities of the entropy equation to model low supersonic flows is explained through standard shock wave theory arguments. A MUSCL-Hancock scheme is employed to discretize the entropy equation and improve both stability and accuracy compared to previous schemes. Equipped with this new formalism, a compressible pressure-based model is proposed and validated on various supersonic test cases. Then, we unify all compressible models proposed by our group under a single formalism and investigate the differences and optimal choices for the various degrees of freedom of our family of models. Finally, this unified model is validated on high supersonic smooth flows and low supersonic shocked flows. 

Jury
Directeur de these M. Pierre BOIVIN CNRS / M2P2
CoDirecteur de these  M. Guillaume CHIAVASSA  Centrale Marseille
Rapporteur M. Rémi ABGRALL Univertität Zürich
Rapporteur M. Jonas LATT Université de Genève
Examinateur Mme Paola CINNELLA Sorbonne Université
Examinateur M. Manfred KRAFCZYK Technische Universität Braunschweig
Examinateur M. Pierre SAGAUT Aix-Marseille Université / M2P2
15 Décembre 2021 - Study of the energy potential for a water supply network / Soutenance de thèse Gautier HYPOLITE
Doctorant : Gautier HYPOLITE

Date de soutenance :  mercredi 15 Décembre 2021 à 14:00 (Amphithéâtre du CEREGE / Technopôle de l'Arbois-Méditerranée, BP80, 13545 Aix-en-Provence)

Abstract : In order to reduce fossil fuels consumption for heating and cooling, different heat sources can be considered. Given theamount of water they carry, water supply systems can play this role and appear to have a high thermal potential. To date, this source has not been used: the main problem is to optimize the sizing of the equipment according to the temporal variability of water flow, water temperature, and the heat (or cold) demand. A first task is to evaluate the available thermal energy. For this purpose, a model based on a minimum number of measurements has been developed. It allows to determine the annual evolution of the temperature and the flow at each point of the network. Temporal variations of water demand and soil surface temperature are taken into account. The ground surface temperature is obtained by satellite measurements. Water flow, soil temperature and water temperature measurements in the network are performed to validate the models and the soil thermal properties. A simulation of the water system hydraulic and thermal behavior is performed for the year 2018 and compared to these measurements. The impact on the water temperature of adding several heat exchanges to the network is then evaluated with this model. In this study, the potential of a raw water system (composed of 5000 km of pipes, and transporting 200 million cubic meters of water per year in the south of France) is studied. As the temperature, the flow rate and heat demand are highly time dependent, a method has been developed to optimize the sizing and location of the exchange systems. This method is based on minimizing the entropy generation in the heat exchanger between the water pipes and the users. The dynamic behavior of a simple heat exchanger (concentric tube) between the network and the user is modeled (pressure profile and fluids and wall temperature calculation). The value of entropy generation due to temperature difference and pressure drop in the exchanger is obtained in transient operation, this value is used as an objective function for the optimization. The results based on the cooling of a data center show that the entropy gain is significant when the optimal size of the heat exchanger is chosen. The use of the raw water network connected to a reversible heat pump for heating and cooling a building has also been studied and results in a high gain compared to an air source heat pump. 

Jury :
Directeur de these M. Jean-Henry FERRASSE Aix Marseille Université
Rapporteur M. Clausse MARC INSA LYON
Rapporteur M. Francois LANZETTA Unversité de Franche-Conté
Examinateur Mme Nathalie MAZET Université de Perpignan
CoDirecteur de these M. Olivier BOUTIN Aix Marseille Université
Examinateur M. Sylvain SERRA LaTEP