Pierre Boivin, Marc Le Boursicaud, Alejandro Millán-Merino, Said Taileb, Josué Melguizo-Gavilanes, et al.. Hydrogen ignition and safety. Efstathios-Al. Tingas. Hydrogen for Future Thermal Engines, Springer International Publishing, pp.161-236, 2023, Green Energy and Technology, 978-3-031-28411-3. ⟨10.1007/978-3-031-28412-0_5⟩. ⟨hal-04244414⟩ Plus de détails...
This chapter provides an overview of H 2 ignition and safety-related questions, to be addressed in the development of future H 2 thermal engines. Basics of H 2 ignition phenomena are covered in the first part, including the well-known branchedchain oxidation reactions described by Semenov & Hinshelwood, as well as useful analytical derivations of induction delay times. The second part provides an overview of classical canonical limit problems, including the explosion-limit (,) diagram, the propagation limits of both deflagrations and detonations, and shock-induced or thermal-induced ignitions. The two remaining parts address two opposite but complementary questions: how to ignite a H 2 engine, and how to prevent hazardous H 2 ignition. In the former, a list of available technologies is offered, while in the latter, simplified models are presented to predict ignition hazards from cold-flow numerical simulations.
Pierre Boivin, Marc Le Boursicaud, Alejandro Millán-Merino, Said Taileb, Josué Melguizo-Gavilanes, et al.. Hydrogen ignition and safety. Efstathios-Al. Tingas. Hydrogen for Future Thermal Engines, Springer International Publishing, pp.161-236, 2023, Green Energy and Technology, 978-3-031-28411-3. ⟨10.1007/978-3-031-28412-0_5⟩. ⟨hal-04244414⟩
S. Taileb, G. Farag, Vincent Robin, A. Chinnayya. A canonical numerical experiment to study detonation initiation from colliding subsonic auto-ignition waves. Physics of Fluids, 2023, 35 (7), pp.076101. ⟨10.1063/5.0156876⟩. ⟨hal-04165459⟩ Plus de détails...
The collision of two subsonic auto-ignition fronts with initial constant velocity was found to transit to detonation only when the collision angle was acute. The interaction of the reactive phase wave with inert hot layers constituted a singularity providing a continuous source of vorticity due to barocline effect. For an acute angle, this singularity that propagated at supersonic speed induced oblique pressure waves, of which resonance, due to the reactivity gradient geometry, near the center of the channel in the fresh gases accelerated the reactive wave fronts until transition to detonation. The numerical results of the present study, even if based on drastic assumptions, were at least in good qualitative consistency with experiments. The geometry of the reactivity gradients can thus provide another seed for the coupling between gas dynamics and heat release. Continuous pressure fluctuations and oblique shocks coming from vorticity sources and sheets from barocline effects can considerably enhance this transition. This path to transition could be complementary to that invoking mixing burning within premixed non-planar turbulent flame brush.
S. Taileb, G. Farag, Vincent Robin, A. Chinnayya. A canonical numerical experiment to study detonation initiation from colliding subsonic auto-ignition waves. Physics of Fluids, 2023, 35 (7), pp.076101. ⟨10.1063/5.0156876⟩. ⟨hal-04165459⟩
Gauthier Wissocq, Said Taileb, Song Zhao, Pierre Boivin. A hybrid lattice Boltzmann method for gaseous detonations. Journal of Computational Physics, 2023, 494, pp.112525. ⟨10.1016/j.jcp.2023.112525⟩. ⟨hal-04244340⟩ Plus de détails...
This article is dedicated to the construction of a robust and accurate numerical scheme based on the lattice Boltzmann method (LBM) for simulations of gaseous detonations. This objective is achieved through careful construction of a fully conservative hybrid lattice Boltzmann scheme tailored for multi-species reactive flows. The core concept is to retain LBM low dissipation properties for acoustic and vortical modes by using the collide and stream algorithm for the particle distribution function, while transporting entropic and species modes via a specifically designed finite-volume scheme. The proposed method is first evaluated on common academic cases, demonstrating its ability to accurately simulate multi-species compressible and reactive flows with discontinuities: the convection of inert species, a Sod shock tube with two ideal gases and a steady one-dimensional inviscid detonation wave. Subsequently, the potential of this novel approach is demonstrated in one- and two-dimensional inviscid unsteady gaseous detonations, highlighting its ability to accurately recover detonation structures and associated instabilities for high activation energies. To the authors' knowledge, this study is the first successful simulation of detonation cellular structures capitalizing on the LBM collide and stream algorithm.
Gauthier Wissocq, Said Taileb, Song Zhao, Pierre Boivin. A hybrid lattice Boltzmann method for gaseous detonations. Journal of Computational Physics, 2023, 494, pp.112525. ⟨10.1016/j.jcp.2023.112525⟩. ⟨hal-04244340⟩
Said Taileb, Alejandro Millán-Merino, Song Zhao, Pierre Boivin. Lattice-Boltzmann modeling of lifted hydrogen jet flames: A new model for hazardous ignition prediction. Combustion and Flame, 2022, 245, pp.112317. ⟨10.1016/j.combustflame.2022.112317⟩. ⟨hal-03796395⟩ Plus de détails...
This numerical study deals with the hazardous ignition of a jet flame in a vitiated co-flow. A novel formulation, based on a passive scalar variable, will be presented to predict hydrogen auto-ignition events. The model, derived from the theoretical analysis of the Jacobian, correctly describes the appearance and absence of auto-ignition in complex configurations based on initial thermodynamic and mixture conditions. No chemical reaction and species equations are required to perform the simulations. Results of Lattice Boltzmann Methods (LBM) simulations of a 3D H 2 /N 2 Cabra flame will be presented using a detailed H 2-Air mechanism. Validation against experimental and numerical results will be provided for the lift-off (distance to auto-ignition). The passive scalar predictions are successfully compared with the reactive simulations. The results show a potential extension of this model to an extensive spectrum of hydrogen safety and large-scale turbulent combustion applications.
Said Taileb, Alejandro Millán-Merino, Song Zhao, Pierre Boivin. Lattice-Boltzmann modeling of lifted hydrogen jet flames: A new model for hazardous ignition prediction. Combustion and Flame, 2022, 245, pp.112317. ⟨10.1016/j.combustflame.2022.112317⟩. ⟨hal-03796395⟩
Alejandro Millán-Merino, Said Taileb, Pierre Boivin. A new method for systematic 1-step chemistry reduction applied to hydrocarbon combustion. Proceedings of the Combustion Institute, 2022, ⟨10.1016/j.proci.2022.08.052⟩. ⟨hal-03825847⟩ Plus de détails...
We propose a new single-step mechanism for the combustion of arbitrary hydrocarbons and alcohols. Unlike most single-step models, no tabulation is required, as the method builds upon a new analytical description of the thermochemical equilibrium of fuel-oxidizer mixtures including dihydrogen and carbon monoxide-two species usually discarded in one-step descriptions-yielding correct adiabatic temperature. The single-step chemistry includes varying stoichiometric coefficients, ensuring a convergence towards thermochemical equilibrium regardless of the local state. The reaction rate is then carefully adjusted to reproduce accurately premixed flames. To tackle ignition simultaneously, an additional passive scalar advection-diffusion-reaction equation is introduced, with a rate fitted on ignition delays. The scalar then serves as an efficiency to modify the single-step reaction rate in autoignition configurations. The obtained scheme is then validated for a wide range of equivalence ratios on homogeneous reactors, premixed flames, a triple flame, and a counterflow diffusion flame. The new analytical thermochemical equilibrium formulation may also serve in speeding up infinitely fast chemistry calculations.
Alejandro Millán-Merino, Said Taileb, Pierre Boivin. A new method for systematic 1-step chemistry reduction applied to hydrocarbon combustion. Proceedings of the Combustion Institute, 2022, ⟨10.1016/j.proci.2022.08.052⟩. ⟨hal-03825847⟩
Alejandro Millán-Merino, Said Taileb, Pierre Boivin. A new method for systematic 1-step chemistry reduction applied to hydrocarbon combustion. Proceedings of the Combustion Institute, In press, ⟨10.1016/j.proci.2022.08.052⟩. ⟨hal-04063894⟩ Plus de détails...
We propose a new single-step mechanism for the combustion of arbitrary hydrocarbons and alcohols. Unlike most single-step models, no tabulation is required, as the method builds upon a new analytical description of the thermochemical equilibrium of fuel-oxidizer mixtures including dihydrogen and carbon monoxide-two species usually discarded in one-step descriptions-yielding correct adiabatic temperature. The single-step chemistry includes varying stoichiometric coefficients, ensuring a convergence towards thermochemical equilibrium regardless of the local state. The reaction rate is then carefully adjusted to reproduce accurately premixed flames. To tackle ignition simultaneously, an additional passive scalar advection-diffusion-reaction equation is introduced, with a rate fitted on ignition delays. The scalar then serves as an efficiency to modify the single-step reaction rate in autoignition configurations. The obtained scheme is then validated for a wide range of equivalence ratios on homogeneous reactors, premixed flames, a triple flame, and a counterflow diffusion flame. The new analytical thermochemical equilibrium formulation may also serve in speeding up infinitely fast chemistry calculations.
Alejandro Millán-Merino, Said Taileb, Pierre Boivin. A new method for systematic 1-step chemistry reduction applied to hydrocarbon combustion. Proceedings of the Combustion Institute, In press, ⟨10.1016/j.proci.2022.08.052⟩. ⟨hal-04063894⟩