Procédés et mécanique aux petites échelles PROMETHEE
Micro-objets déformables sous forçage hydrodynamique
Microfluidique et Procédés
Organisation des écoulements aux petites échelles
Séparations membranaires
suite...
PROcédés et MEcanique aux peTites écHEllEs
Présentation
L’équipe PROcédés et MEcanique aux petiTes écHEllEs (PROMETHEE) développe des compétences marquées relevant aussi bien de la mécanique des milieux continus que du génie des procédés tout en combinant approche expérimentale et développement de théories et de modèles. L’originalité des études menées se décline selon plusieurs spécificités :
Echelle micro-nano d’observation et d’analyse qui évacue les problématiques liées à la turbulence (régime de Stokes) mais nécessite de considérer des aspects aux frontières de la discipline ;
Rôle prédominant des interfaces : interactions avec les parois solides à l’échelle nano (nano-tubes), interaction fluide-structure avec des membranes fluides ou polymérisée à l’échelle méso ;
Connexion avec les fluides complexes, la matière molle et les systèmes biologiques.
Sur le thème de la micro- et nano-fluidique, les objets d’étude, physico-chimiques (gouttes, capsules,…) et biologiques (vésicules, globules rouges,…), comprennent aussi les procédés intensifiés d’encapsulation et de vectorisation par microréacteur, thèmes en plein essor. L’équipe développe également des outils de caractérisation de l’organisation aux petites échelles comme le développement de simulations numériques pour rendre compte de la ségrégation obtenue au sein de milieux granulaires et la mise au point de méthode chimique de caractérisation des effets de micromélange (mélange à l’échelle moléculaire). A cela s’ajoute une activité de caractérisation et modélisation thermodynamique de milieux complexes.
Les outils numériques développés et mis en œuvre sont variés : intégrale de frontière, éléments finis, immersed boundary method, méthode Lattice Boltzman…
Pierrette Guichardon, Carlos Baqueiro, Nelson Ibaseta. Villermaux–Dushman Test of Micromixing Characterization Revisited: Kinetic Effects of Acid Choice and Ionic Strength. Industrial and engineering chemistry research, American Chemical Society, 2021, 60 (50), pp.18268-18282. ⟨10.1021/acs.iecr.1c03208⟩. ⟨hal-03597451⟩ Plus de détails...
The well-known Villermaux-Dushman system is nowadays widely used for examining the micromixing efficiency either in batch or continuous intensified reactors. However, a bibliographic review shows that kinetic data are too scattered for a reliable determination of the micromixing times. The Dushman reaction kinetics is then reexamined with the use of sulfuric and perchloric acids. The results confirm the fifth-order rate law. More precisely, the I-, H+, and IO3- dependence orders on the rate law are, respectively, 2, 2, and 1, under any condition. To be more consistent with the reactant concentrations used in the Villermaux-Dushman test, we extend their studied range, namely, 1.6 x 10(-3) M <= [I-](0) <= 1.6 x 10(-2) M, 1.2 x 10(-4) M <= [H+](0) <= 1.57 x 10(-2) M, and 4 x 10(-5) M <= [IO3-] <= 2.1 X 10(-4) M. The ionic strength varies up to 2 M. The experimental results show that the rate constant is still ionic-strength-dependent. The results obtained with sulfuric and perchloric acids are found to be consistent and in relatively good agreement at small ionic strengths (mu < 0.1 M) only. At a higher ionic strength, the use of sulfuric acid requires sustained attention to the constant of the second dissociation equilibrium. The nonideal solution behavior raising at a high ionic strength makes its estimation deeply sensitive.
Pierrette Guichardon, Carlos Baqueiro, Nelson Ibaseta. Villermaux–Dushman Test of Micromixing Characterization Revisited: Kinetic Effects of Acid Choice and Ionic Strength. Industrial and engineering chemistry research, American Chemical Society, 2021, 60 (50), pp.18268-18282. ⟨10.1021/acs.iecr.1c03208⟩. ⟨hal-03597451⟩
Journal: Industrial and engineering chemistry research
Pierrette Guichardon, Carlos Baqueiro, Nelson Ibaseta. Villermaux–Dushman Test of Micromixing Characterization Revisited: Kinetic Effects of Acid Choice and Ionic Strength. Industrial and engineering chemistry research, American Chemical Society, 2021, 60 (50), pp.18268-18282. ⟨10.1021/acs.iecr.1c03208⟩. ⟨hal-03514628⟩ Plus de détails...
The well-known Villermaux-Dushman system is nowadays widely used for examining the micromixing efficiency either in batch or continuous intensified reactors. However, a bibliographic review shows that kinetic data are too scattered for a reliable determination of the micromixing times. The Dushman reaction kinetics is then reexamined with the use of sulfuric and perchloric acids. The results confirm the fifth-order rate law. More precisely, the I-, H+, and IO3- dependence orders on the rate law are, respectively, 2, 2, and 1, under any condition. To be more consistent with the reactant concentrations used in the Villermaux-Dushman test, we extend their studied range, namely, 1.6 x 10(-3) M <= [I-](0) <= 1.6 x 10(-2) M, 1.2 x 10(-4) M <= [H+](0) <= 1.57 x 10(-2) M, and 4 x 10(-5) M <= [IO3-] <= 2.1 X 10(-4) M. The ionic strength varies up to 2 M. The experimental results show that the rate constant is still ionic-strength-dependent. The results obtained with sulfuric and perchloric acids are found to be consistent and in relatively good agreement at small ionic strengths (mu < 0.1 M) only. At a higher ionic strength, the use of sulfuric acid requires sustained attention to the constant of the second dissociation equilibrium. The nonideal solution behavior raising at a high ionic strength makes its estimation deeply sensitive.
Pierrette Guichardon, Carlos Baqueiro, Nelson Ibaseta. Villermaux–Dushman Test of Micromixing Characterization Revisited: Kinetic Effects of Acid Choice and Ionic Strength. Industrial and engineering chemistry research, American Chemical Society, 2021, 60 (50), pp.18268-18282. ⟨10.1021/acs.iecr.1c03208⟩. ⟨hal-03514628⟩
Journal: Industrial and engineering chemistry research
Oleksandr Dimitrov, Pierrette Guichardon, Isabelle Raspo, Evelyne Neau. Vapor–Liquid Equilibria of the Aqueous and Organic Mixtures Composed of Dipropylene Glycol Methyl Ether, Dipropylene Glycol n -Butyl Ether, and Propylene Glycol n -Butyl Ether. Part II: Modeling Based on the NRTL-PR Model. Industrial and engineering chemistry research, American Chemical Society, 2021, 60 (30), pp.11513-11524. ⟨10.1021/acs.iecr.1c01545⟩. ⟨hal-03379757⟩ Plus de détails...
Further to the Part I of the present paper, the second Part is concentrated around the VLE modeling of binary mixtures involving the three glycol ethers previously studied experimentally. The authors propose to use the NRTL-PR model for the representation of these non-ideal mixtures. The main difficulties of modelling related to very low vapor pressures and the way of dealing with them are highlighted. The unknown critical parameters for DPM, DPnB and PnB were determined using robust group contribution methods. However, the experimental values of these parameters have never been published before. The main goal of the authors was to obtain the most satisfactory representation of the experimental data provided in the Part I. Some issues that mostly occurred in mixtures involving the PnB as well as in mixtures having very low vapor pressures, were encountered. Nevertheless, we have obtained in general a satisfactory representation of measured points regardless of those issues.
Oleksandr Dimitrov, Pierrette Guichardon, Isabelle Raspo, Evelyne Neau. Vapor–Liquid Equilibria of the Aqueous and Organic Mixtures Composed of Dipropylene Glycol Methyl Ether, Dipropylene Glycol n -Butyl Ether, and Propylene Glycol n -Butyl Ether. Part II: Modeling Based on the NRTL-PR Model. Industrial and engineering chemistry research, American Chemical Society, 2021, 60 (30), pp.11513-11524. ⟨10.1021/acs.iecr.1c01545⟩. ⟨hal-03379757⟩
Journal: Industrial and engineering chemistry research
Hadrien Jaubert, Philippe Borel, Pierrette Guichardon, Jean-François Portha, Jean-Noël Jaubert, et al.. Assessment of organic Rankine cycle configurations for solar polygeneration orientated to electricity production and desalination. Applied Thermal Engineering, Elsevier, 2021, 195, pp.116983. ⟨10.1016/j.applthermaleng.2021.116983⟩. ⟨hal-03597561⟩ Plus de détails...
This work addresses the polygeneration concept integrating concentrating solar power (CSP) with an organic Rankine cycle (ORC) to produce electricity and drinking water by hybrid desalination process combining reverse osmosis (RO) and low-temperature multi-effect distillation (LTMED). Experiments carried out on a bench scale RO pilot led to determine optimal operating parameters as well as options to mitigate the main limiting factors of this technology by hybridizing with LTMED. These data helped to simulate a large scale solar polygeneration plant integrating parabolic trough collectors as CSP technology and a hybrid RO-LTMED system as desalination technology. Various ORC design proposals were simulated and the optimal configuration was pointed out on the basis of thermodynamic criteria (energy efficiency and exergy destruction) and an economic analysis by using two working fluids: an alkane commonly admitted as good candidate and an ester proposed here as green alternative. Results obtained in this work contribute positively to extending the solar polygeneration for desalination and production of energy leading to future sustainable plants.
Hadrien Jaubert, Philippe Borel, Pierrette Guichardon, Jean-François Portha, Jean-Noël Jaubert, et al.. Assessment of organic Rankine cycle configurations for solar polygeneration orientated to electricity production and desalination. Applied Thermal Engineering, Elsevier, 2021, 195, pp.116983. ⟨10.1016/j.applthermaleng.2021.116983⟩. ⟨hal-03597561⟩
Sudip Das, Marc Jaeger, Marc Leonetti, Rochish M. Thaokar, Paul G. Chen. Effect of pulse width on the dynamics of a deflated vesicle in unipolar and bipolar pulsed electric fields. Physics of Fluids, American Institute of Physics, 2021, 33 (8), pp.081905. ⟨10.1063/5.0057168⟩. ⟨hal-03317441⟩ Plus de détails...
Giant unilamellar vesicles subjected to pulsed direct-current (pulsed-DC) fields are promising biomimetic systems to investigate the electroporation of cells. In strong electric fields, vesicles undergo significant deformation, which strongly alters the transmembrane potential, consequently the electroporation. Previous theoretical studies investigated the electrodeformation of vesicles in DC fields (which are not pulsed). In this work, we computationally investigate the deformation of a deflated vesicle under unipolar, bipolar, and two-step unipolar pulses and show sensitive dependence of intermediate shapes on type of pulse and the pulse width. Starting with the stress-free initial shape of a deflated vesicle, which is similar to a prolate spheroid, the analysis is presented for the cases with higher and lower conductivities of the inner fluid medium relative to the outer fluid medium. For the ratio of inner to outer fluid conductivity, σ r = 10, the shape always remains prolate, including when the field is turned off. For σ r = 0.1, several complex dynamics are observed, such as the prolate-to-oblate (PO), prolate-to-oblate-to-prolate (POP) shape transitions in time depending upon the strength of the field and the pulse properties. In this case, on turning off the field, a metastable oblate equilibrium shape is seen, that seems to be a characteristics of a deflated vesicle leading to POPO transitions. When a two-step unipolar pulse (a combination of a strong and a weak subpulse) is applied, a vesicle can reach an oblate or a prolate final shape depending upon the relative durations of the two subpulses. This study suggests that the transmembrane potential can be regulated using a bipolar pulsed-DC field. It also shows that the shapes admitted in the dynamics of a vesicle depends upon whether the pulse is unipolar or bipolar. Parameters are suggested wherein, the simulation results can be demonstrated in experiments.
Sudip Das, Marc Jaeger, Marc Leonetti, Rochish M. Thaokar, Paul G. Chen. Effect of pulse width on the dynamics of a deflated vesicle in unipolar and bipolar pulsed electric fields. Physics of Fluids, American Institute of Physics, 2021, 33 (8), pp.081905. ⟨10.1063/5.0057168⟩. ⟨hal-03317441⟩
Mercredi 16 juin 2021
- De la vague déferlante au globule rouge / Soutenance HDR Paul Gang CHEN
Dr. Paul Gang CHEN
Date de soutenance : le mercredi 16 juin à 15h00 (visio - Zoom)
Résumé : au cours de cette soutenance, je présenterai mes différents travaux sur la modélisation et la simulation numérique d’écoulements interfaciaux : de la vague déferlante au globule rouge.
Jury :
M. Daniel Henry, LMFA, École Centrale de Lyon, Rapporteur
M. Grétar Tryggvason, Johns Hopkins University, Rapporteur
M. Stéphane Zaleski, d’Alembert, Sorbonne Université, Rapporteur
M. Richard Saurel, LMA, Aix-Marseille Université
M. Marc Jaeger, M2P2, École Centrale de Marseille, Tuteur
M. Marc Leonetti, LRP, Grenoble, Invité
Mardi 16 Mars
- Preparation of polyurea microcapsules calibrated in size and shell thickness by a microfluidic process for the absorption of ultraviolet / Soutenance de thèse Jiupeng DU
Doctorant : Jiupeng DU
Date de soutenance : le mardi 16 mars à 14h00 en VISIO
Abstract : This thesis aims to exploit the advantages of microfluidics for the production of polyurea microcapsules. Because of its ability to produce drops with a very narrow size distribution, microfluidic emulsification shows great interest as the first step for rapid interfacial polymerisation. Although the literature on the production of drops in microchannels is abundant, commonly used organic solvents are limited to certain toxic hydrocarbon oils or ketones, as these solvents are very hydrophobic and therefore easy to emulsify in water.
The first part of the work concentrates on the feasibility of emulsifying two less hydrophobic green solvents (dibutyl adipate and n-butyl acetate) in water and study the different flow regimes within a hydrophilic flow-focusing microchannel of glass. The results show that the wetting of the walls by dibutyl adipate can be modified by adding a surfactant (Tween 80). However, the formation of the drops being much faster than the transfer of the surfactant to the interface of the drop being formed, concentrations much higher than the critical micellar concentration are necessary to avoid wetting of the walls by the dispersed phase and thus the appearance of disordered flow regimes. The behavior of the n-butyl acetate/water system is similar, but the comparison of the flow maps for the two systems raises the question of the choice of dimensional numbers for representing the transition between the dripping and jetting regimes.
In the second part, the addition of an interfacial polymerization within the emulsion formed by microfluidics is studied in detail. We aim to fabricate polyurea microcapsules calibrated in size and shell thickness containing octyl salicylate (OS). These microcapsules are used to study, for the first time, the influence of the shell thickness of microcapsules on their absorption efficiency against ultraviolet (UV) light. The results show that an increase of the concentration of isocyanate (HDB-LV or hexamethylene diisocyanate biuret) in the organic phase increases the shell thickness of the microcapsules, their encapsulation efficiency and very moderately their average absorbance. The average absorbance of the microcapsules is inversely proportional to the size of the microcapsules (for the same mass of OS). A theoretical model is proposed to estimate the average absorbance as a function of the mass fraction of HDB-LV in the organic phase and of the size of microcapsules. Finally, the concentration of amine (ethylenediamine) has been optimized to ensure the spherical shape of the microcapsules.
Jury:
Marc LEONETTI (CNRS, LRP), Rapporteur
Nathalie LE SAUZE (Univ Toulouse III), Rapportrice