Procédés et Fluides Supercritiques

Extraction supercritique

Fractionnement supercritique

Génération de particules, cristallisation, encapsulation

Imprégnation (matrices et implants polymériques, silices, …)

suite...

Procédés et fluides supercritiques
Présentation

Les fluides supercritiques (FSC) ou sous critiques ont des propriétés spécifiques qui sont exploitées dans un certain nombre d'applications aussi bien à l'échelle du laboratoire qu'à l'échelle industrielle. Leur utilisation représente une alternative à l'utilisation des solvants organiques présentant des problèmes de pollution, de toxicité et/ou de sécurité. 

L’équipe «Procédés & Fluides Supercritiques» possède une expertise particulière scientifique et technologique permettant la conception, la conduite et l’optimisation de procédés utilisant le CO2 supercritique. 
Pour une meilleure maîtrise de ces procédés, une approche multi-échelle est privilégiée. L’équipe étudie plus particulièrement les propriétés des fluides supercritiques, les équilibres de phase, les phénomènes aux interfaces et les transferts au sein de ces milieux sous pression. Une attention particulière est également portée aux comportements de matériaux, aussi bien d’origine synthétique que biologique, en contact avec du dioxyde de carbone supercritique.
Des outils de modélisation développés au sein de l’équipe permettent d’appréhender plus particulièrement les cinétiques de transfert (écoulements, phénomènes de dispersion, mélange) et la thermodynamique de ces milieux sous pression. 

L’équipe a une activité forte centrée sur les applications suivantes :
- Extraction supercritique, fractionnement supercritique et mise en forme de produits d’origine végétale
- Élaboration de systèmes à libération contrôlée médicamenteux (cristallisation de principes actifs, encapsulation, imprégnation,…)
- Stérilisation supercritique de dispositifs médicaux et produits de santé
- Dé-cellularisation supercritique de greffons


Partenaires industriels (période 2020-2024) : 

BioTechOne ; Cousin Surgery ; Lattice Medical ; Le Rouge Français ; Solvay ; Symrise ; THEA ; Total Energies


Responsable

x >

Annuaire personnel permanent

x >

Doctorants, Post-Doctorants et CDD

x >

Equipement

- Autoclaves d'extraction, de cristallisation et d'imprégnation - de quelques mL à plusieurs litres.
- Montage expérimental de cristallisation ou d'encapsulation en milieu supercritique.
- Pilote de fractionnement supercritique
- Autoclave à fenêtre
- Cellules Haute Pression de mesures d'équilibres de phases résistant jusqu'à 700 bar. 

Dernières publications de l'équipe

  • Aymeric Fabien, Guillaume Lefebvre, Elisabeth Badens, Brice Calvignac, Damien Chaudanson, et al.. Contact angle of ethanol, water, and their mixtures on stainless steel surfaces in dense carbon dioxide. Journal of Colloid and Interface Science, 2024, 655, pp.535-545. ⟨10.1016/j.jcis.2023.10.163⟩. ⟨hal-04316090⟩ Plus de détails...
  • Vénicia Numa, Christelle Crampon, Arnaud Bellon, Adil Mouahid, Elisabeth Badens. Valorization of food side streams by supercritical fluid extraction of compounds of interest from apple pomace. Journal of Supercritical Fluids, 2023, 202, pp.106056. ⟨10.1016/j.supflu.2023.106056⟩. ⟨hal-04294235⟩ Plus de détails...
  • Mathieu Martino, Adil Mouahid, Michelle Sergent, Camille Desgrouas, Catherine Badens, et al.. Supercritical millifluidic process for siRNA encapsulation in nanoliposomes for potential Progeria treatment (ex-vivo assays). Journal of Drug Delivery Science and Technology, 2023, 87, ⟨10.1016/j.jddst.2023.104804⟩. ⟨hal-04254108⟩ Plus de détails...
  • Adil Mouahid, Magalie Claeys-Bruno, Isabelle Bombarda, Sandrine Amat, Andrea Ciavarella, et al.. Valorization of handmade argan press cake by supercritical CO2 extraction. Food and Bioproducts Processing, 2023, 137, pp.168-176. ⟨10.1016/j.fbp.2022.11.011⟩. ⟨hal-04063823⟩ Plus de détails...
  • Victorine Warambourg, Adil Mouahid, Christelle Crampon, Anne Galinier, Magalie Claeys-Bruno, et al.. Supercritical CO2 sterilization under low temperature and pressure conditions. Journal of Supercritical Fluids, 2023, 203, pp.106084. ⟨10.1016/j.supflu.2023.106084⟩. ⟨hal-04233306⟩ Plus de détails...
x >

Rencontres scientifiques

Soutenances de thèses et HDR

25 novembre 2024 - Design and optimization of supercritical treatment processes for interventional cardiology medical devices / Zohra Laggoune PhD Defense
Doctorante : Zohra Laggoune

Date : 25 novembre à 14h00, Cerege amphi Technopôle de l'Arbois-Méditerranée

Abstract: Atherosclerosis, a leading cardiovascular condition, involves arterial narrowing due to fatty deposits, impeding blood flow. Angioplasty, using stents or balloons, is a minimally invasive treatment for atherosclerosis. Recent advances have led to the development of active stents and balloons, which release antiproliferative agents (e.g., sirolimus) via a polymeric coating to prevent restenosis and promote arterial healing. Conventionally, these devices are manufactured using organic solvents, and may then contain harmful residues posing environmental and health concerns.
This thesis, conducted in collaboration with AlchiMedics, investigates supercritical CO2 technology as an eco-friendly alternative for manufacturing active coronary medical devices. The study first focuses on the behavior of the polymers that compose them in a supercritical CO2 environment. A Fourier Transformed InfraRed microscope coupled with a high-pressure cell was used to measure CO2 sorption in the polymers and their swelling. Additionally, a high-pressure visualization cell was used to assess the physical state of the polymers when exposed to supercritical CO2. Furthermore, the solubility in supercritical CO2 of sirolimus, the main active ingredient involved in this thesis, was determined using a static gravimetric method, followed by data modeling.
Based on this fundamental knowledge, supercritical CO2 was applied to extract residual solvent from pre-dried active stents (HT Supreme®). Semi-continuous mode extraction at 8 MPa, 308.15 K for 0.5 h resulted in an extraction efficiency of 91.80 % while minimizing polymer detachment and ensuring satisfactory in-vitro sirolimus release.
This study also explores supercritical impregnation of sirolimus to develop active balloons and stents, targeting a drug loading of 1.2 µg.mm-2 for both devices. Balloon impregnation was performed in batch mode based on a Design of Experiments. Operating conditions of 18 MPa, 323.15 K for a duration of 18 h were identified to maximize the drug loading to 0.68 µg.mm-2, while achieving positive ex-vivo results. In contrast, impregnations of two types of commercial stents (AMS® and HT Supreme®) resulted in low drug loadings and detachment of polymeric coatings. The development of the Fast Impregnation process (FIP), significantly improved drug loadings from 0.035 to 1.11 µg.mm-2 for AMS®, and from 0.015 to 7.3 µg.mm-2 for HT Supreme®. This process also preserved the integrity of polymer coatings under conditions set at 12.5 MPa and 308.15 K for AMS®, and at 25 MPa and 313.15 K for HT Supreme®.

Keywords: Atherosclerosis, active coronary stent, active coronary balloon, polymers, supercritical CO2, impregnation, extraction, sterilization

Jury :
Pr. Albertina CABAÑAS - Complutense University of Madrid - Reviewer
Pr. Iolanda DE MARCO - University of Salerno -  Reviewer
Dr. Thierry TASSAING - University of Bordeaux- Examiner and president of the jury
Pr. Loïc MACÉ - Aix Marseille University - Examiner
Pr. Elisabeth BADENS -  Aix Marseille University - Thesis director 
Dr. Yasmine MASMOUDI - Aix Marseille University - Thesis co-director
Dr. Christophe BUREAU - AlchiMedics - Thesis co-director and guest member 
24 septembre 2024 - Supercritical technology applied to the development of innovative intravitreal sustained-release drug delivery systems / Matthieu Schneider PhD defense
Doctorant : Matthieu SCHNEIDER

Date : le 24 septembre à 9h00, amphithéâtre du CEREGE, technopole de l'Arbois

Abstract : Age-related macular degeneration (AMD), manifested by the appearance of a dark spot in the center of the vision, has become a significant public health issue, with the number of patients set to rise over the coming decades. Since 2006, the pharmaceutical industry has introduced therapies with monthly intravitreal injections of anti-VEGF (vascular endothelial growth factor) antibodies to mitigate its development. Designing an intravitreal implant with antibody release controlled over twelve weeks has been proposed to simplify therapy management. Antibodies are thermally, chemically, and biologically sensitive therapeutic proteins. This study demonstrates the potential of the Sequential Dispersion Particles from Gas Saturated Solution (SD-PGSS) process for encapsulating sensitive active ingredients. The SD-PGSS process enables work to be carried out at moderate temperatures (38 °C) and without solvent. The study focused on the optimization of operating conditions through the investigation of polyesters (Polycaprolactone PCL, poly(Lactide-co-Glycolide) PLGA, and a polyether (Poly(Ethylene Glycol) PEG) biocompatible in the presence of supercritical CO2. Two operating conditions were selected: 38 °C/25 MPa for PCL and the PCL/PLGA blend (1:1 w/w) and 45 °C/25 MPa for PCL alone and the PCL/PEG blend (1:1 w/w). The implementation of the SD-PGSS process resulted in a repeatable process with high yields (80 - 95%). The study of two model molecules, lutein, a small hydrophobic molecule of therapeutic interest studied in an oral administration context, and bovine serum albumin, a hydrophilic protein studied in an intravitreal release scenario, demonstrated the repeatability of the process, the homogeneity of the final product, and the possibility of modulating the release in vitro. The antibody study demonstrated low activity maintenance and prolonged release for up to 8 weeks, leading to a prototype with compatible dimensions for ophthalmic use.

Jury
Géraldine PIEL                         Rapporteuse / Professeure, Université de Liège, Belgique
Ernesto DI MAIO                      Rapporteur / Professeur, Université de Naples-Federico II, Italie
Martial SAUCEAU                    Examinateur / Maître-assistant, Ecole des Mines d’Albi-Carmaux
John CONRATH                       Président du jury / Professeur - Chirurgien, Clinique Monticelli 
Elisabeth BADENS                   Directrice de thèse / Professeure, Aix-Marseille Université 
Yasmine MASMOUDI               Co-directrice de thèse / Maître de conférences , Aix-Marseille Université
Frédéric MATONTI                   Membre invité / Professeur - Chirurgien , Clinique Monticelli
Céline OLMIERE                      Membre invitée / Directrice scientifique, Théa Open Innovation