Procédés Membranaires

Membrane bioreactors

Membrane characterization and drinking water

Process industrialization and CFD

Transport properties and metrology

Treatment of industrial effluents

Process Intensification

suite...

Ongoing projects

The team is developing numerous national and international research projects funded by different organizations or industrial partnerships.

Membranous Processes Team
Présentation


The EPM team devotes its activities to applied research and its transfer to the industrial world where scientific, economic and confidentiality requirements of the treated subjects interact.
The activities of the team are in strong progression and cover a broad spectrum: from the design of new membranes and modules to the development and installation of new industrial membrane processes. The main objective of the Membrane Processes team is to improve the efficiency of these processes limited by clogging and the cost of implementation, while providing innovative solutions for the treatment of specific effluents and the purification of high value-added compounds.

Any evolution of the processes can only be based on an in-depth knowledge of the problems that generate them and the choices that can be made. The scientific issues raised are complex and multiple. In this context, most of the research activities are carried out in partnership with an industrial company within the framework of a research collaboration contract. Starting from an idea developed in the laboratory or an industrial problem, it is a question here of working in an industrial-EPM partnership in a realistic framework of operating variables. 
The optimization of membrane processes requires a better understanding of the mechanisms involved. The activities of the EPM are divided into 6 interrelated research axes:

    - Membrane bioreactor (Benoit Marrot)
    - Membrane characterization and drinking water (Yvan Wyart)
    - Process Industrialization and CFD (Philippe Moulin)
    - Transport Properties and Metrology (Jean Philippe Bonnet)
    - Effluent treatment (Emilie Carretier)
    - Process Intensification (Mathias Monnot)


For more information, click on the images below !

Responsable

x >

Annuaire personnel permanent

x >

Doctorants, Post-Doctorants et CDD

x >

Equipements

Plate forme de 20 pilotes de filtration
1 pilote de perméation gazeuse
2 pilote de pervaporation
1 OI haute pression, NF,
3 pilotes de screening
9 pilotes de MF-UF
1 BRM
1 station de production d'eau potable 20m3.J-1
1 unité de purification d'eau 240m3.J-1
1 BRM industriel
1 pilote multi scales MF-UF

Partenaires industriels et académiques

Dernières Publications de l'équipe

  • Grégory Cano, Philippe Moulin. Treatment of Boiler Condensate by Ultrafiltration for Reuse. Membranes, 2022, 12 (12), pp.1285. ⟨10.3390/membranes12121285⟩. ⟨hal-03967074⟩ Plus de détails...
  • Mathieu Martino, Hugo Taligrot, Clémence Cordier, Philippe Moulin. Supercritical fluid treatment of organic membranes. Journal of Membrane Science, 2022, 661, pp.120892. ⟨10.1016/j.memsci.2022.120892⟩. ⟨hal-03967095⟩ Plus de détails...
  • Maryse Drouin, Giulia Parravicini, Samy Nasser, Philippe Moulin. Membrane Separation Used as Treatment of Alkaline Wastewater from a Maritime Scrubber Unit. Membranes, 2022, 12 (10), pp.968. ⟨10.3390/membranes12100968⟩. ⟨hal-03967086⟩ Plus de détails...
  • Mathilda Trevisan, Jérôme Vicente, Rémy Ghidossi, Adrien Vincent, Philippe Moulin. Membrane characterisation from the support to the skin layer: Application to silicon carbide (SiC) membranes. Journal of the European Ceramic Society, 2022, 42 (9), pp.3759-3769. ⟨10.1016/j.jeurceramsoc.2022.02.045⟩. ⟨hal-03967172⟩ Plus de détails...
  • H. Taligrot, M. Monnot, J. Ollivier, C. Cordier, N. Jacquet, et al.. Retention of the Tulane virus, a norovirus surrogate, by ultrafiltration in seawater and production systems. Aquaculture, 2022, 553, pp.738096. ⟨10.1016/j.aquaculture.2022.738096⟩. ⟨hal-03967224⟩ Plus de détails...
x >

Rencontres scientifiques

Soutenances de thèses et HDR

13 décembre - Développement d’une unité hybride couplant la désulfuration des gaz d’échappement et le traitement des effluents aqueux pour la marine marchande / Soutenance de thèse Maryse DROUIN
Doctorante : Maryse DROUIN

Date : Mardi 13 décembre à 9h45 dans l’amphithéâtre du CEREGE (Technopole Environnement Arbois - Méditerranée)

Résumé : Suite à la réduction des émissions de composés soufrés en pleine mer de 85 %, des unités de traitement de gaz d’échappement hybrides ont été installées sur les navires de commerce. Ces unités combinent le traitement du gaz par absorption et l’épuration des effluents liquides par filtration membranaire. La mise en place de ces procédés embarqués est récente (2020) et les contraintes d’opérabilités sont nombreuses notamment en ce qui concerne le fonctionnement des unités membranaires. Dans ce contexte, la thèse a pour principaux objectifs : (i) d’étudier le transfert de matière au travers des membranes (ii) d’optimiser les conditions opératoires et la gestion des procédés afin de (iii) fiabiliser le couplage des procédés en vue d’une utilisation continue. Pour cela, une caractérisation des différentes qualités d’eau à traiter obtenue après le lavage des gaz d’échappement a été réalisée. Puis le comportement et les performances des membranes multitubulaires, en carbure de silicium (SiC) et en oxyde de zircone (ZrO2), ont été étudiés à l’échelle semi-industrielle pour la filtration d’effluents réels. Les résultats obtenus ont permis pour chaque membrane de préconiser des paramètres de fonctionnement stable et de simplifier la gestion des unités embarquées. Les paramètres recommandés pour les membranes SiC, ont été validés en conditions réelles sur l’un des navires au cours de la navigation. Lors de cette étude, les résultats ont également mis en avant mettant une robustesse et une flexibilité de l’unité membranaire vis-à-vis du procédé global de désulfuration. Le traitement des eaux permet une navigation plus respectueuse de l’environnement avec la production d’un perméat exempt de matières en suspension et moins concentré en ions métalliques et en hydrocarbures. De plus, les paramètres préconisés ont permis une réduction de 70 % du volume de concentrat, dont le stockage est aujourd’hui la principale limitation à l’utilisation continue des unités en Closed Loop.

Jury

Claire FARGUES / Rapporteur  / Maitre de conférences : Université Paris Saclay
Julie MENDRET / Rapporteur / Maitre de conférences : Université de Montpellier
Emilie CARRETIER / Examinateur / Professeur des Universités : Aix Marseille Université
Rémy GHIDOSSI  / Président du jury / Professeur des Universités : Université de Bordeaux
Philippe MOULIN / Directeur de thèse / Professeur des Universités : Aix Marseille Université
Samy NASSER / Invité / Senior Manager : CMAships pour le groupe CMA CGM 
26 November 2021 - Ultrafiltration as urban wastewater tertiary treatment for water reuse at semi-industrial scale / Thesis defense Jiaqi YANG
Doctorant : Jiaqi YANG 

Date de soutenance :   Vendredi 26 November 2021 à 10h (Grand Amphithéâtre du CEREGE - Site de l'Arbois) 

Abstract : Water reuse is a sustainable development strategy that benefits society and future generations. In this study, a semi-industrial ultrafiltration (UF) pilot plant established at the outlet of a wastewater treatment plant was studied to assess its feasibility and sustainability for non-potable water reuse. The optimization of operating conditions made it possible to support reliable and sustainable filtration performance, the operating conditions were optimized through comparative analysis in terms of water quality, permeability variation, irreversible fouling management, and water recovery rate. The best conditions were J80t40BW1/3 (flux of 80 L·h−1·m−2, filtration cycle time of 40 min, 1 air backwash followed by 3 classical backwashes), J60t60BW1/4 and J60t60BW1/3. The long-term study on condition J60t60BW1/3 provides sustainable and adaptable filtration performance regardless of the temperature and feed water quality variation. In addition, the air backwashes enabled excellent reversibility of membrane fouling, which was approximately 1.25 to 2 times higher than of classic backwashes in average. The quality of the UF permeate was good enough to be reused in non-potable purposes as it met reuse guidelines of the World Health Organization, reuse standards of France, and the most recent EU regulation for agricultural irrigation. A specific study of membrane cleaning has shown that the addition of NaClO in backwash water can greatly increase cleaning efficiency of air backwashes. Finally, the calculation of the capital expenditure (CAPEX) and operational expenditure (OPEX) of the UF system under optimized conditions gives a profitable net unit price for water production. Through this thesis, UF is confirmed to be a reliable tertiary treatment for water reuse and the results give operational indications for the industrial scale and provides proposals for the management of membrane fouling by air backwash with chemical assistance. 

Jury :
Annabelle COUVERT (Examinateur) / Professeur des Universités, ISCR, ENSC Rennes
Lionel ERCOLEI (Membre invité) /Directeur de l’Innovation, Société des Eaux de Marseille Métropole
Marc HÉRAN (Rapporteur) / Professeur des Universités, IEM, Université de Montpellier
Stéphanie LABORIE (Rapporteur) / Maître de Conférences HDR, TBI, INSA Toulouse
Mathias MONNOT (Co-Directeur de Thèse) / Maître de Conférences, M2P2, Aix-Marseille Université
Philippe MOULIN (Directeur de Thèse) / Professeur des Universités, M2P2, Aix-Marseille Université
Patrick SAUVADE (Membre Invité) / Product manager, Aquasource, Toulouse