50% --> Assure l'appuis à la recherche expérimentale pour les équipes de l'Arbois :
Fluides supercritiques,
Procédés membranaires
Traitement des eaux et des déchets
50% --> Doctorante
Publications scientifiques au M2P2
2023
Christelle Crampon, Thibaud Detoisien, Lama Itani, Fréderic Nicolas, Emmanuelle Myotte, et al.. Novel crystal morphology for sodium bicarbonate obtained by using the supercritical anti-solvent process. Powder Technology, 2023, 418, pp.118313. ⟨10.1016/j.powtec.2023.118313⟩. ⟨hal-04546398⟩ Plus de détails...
Adil Mouahid, Magalie Claeys-Bruno, Isabelle Bombarda, Sandrine Amat, Andrea Ciavarella, et al.. Valorization of handmade argan press cake by supercritical CO2 extraction. Food and Bioproducts Processing, 2023, 137, pp.168-176. ⟨10.1016/j.fbp.2022.11.011⟩. ⟨hal-03992094⟩ Plus de détails...
The capability of supercritical CO2 to extract edible oil from handmade Argan press cake was investigated. The aim is to enable Moroccan cooperatives to improve their economic situation by valuing the handmade argan press cake, which is nowadays considered as a waste, applying a clean extraction process. Extraction experiments were conducted at 300 and 400 bar, 333 K and 0.14 kg/h on dried biomass. The fatty acids and tocopherols compositions of the extracted oil were found similar to previous studies and correspond to a commercial edible oil. The air flow dried biomass exhibits a higher extraction yield compared to the freeze-dried biomass. A pressure of 300 bar seems to be suffcient to allow the extraction of oil with a satisfactory extraction kinetic.
Adil Mouahid, Magalie Claeys-Bruno, Isabelle Bombarda, Sandrine Amat, Andrea Ciavarella, et al.. Valorization of handmade argan press cake by supercritical CO2 extraction. Food and Bioproducts Processing, 2023, 137, pp.168-176. ⟨10.1016/j.fbp.2022.11.011⟩. ⟨hal-03992094⟩
Adil Mouahid, Magalie Claeys-Bruno, Isabelle Bombarda, Sandrine Amat, Andrea Ciavarella, et al.. Supercritical CO2 extraction of oil from Moroccan unroasted Argan Kernels: Effects of process parameters to produce cosmetic oil. Journal of CO2 Utilization, 2022, 59, pp.101952. ⟨10.1016/j.jcou.2022.101952⟩. ⟨hal-03818747⟩ Plus de détails...
The effects of process parameters: pressure (200-400 bar), temperature (313-333 K), and flow rate (0.11-0.27 kg/h) on the efficiency of extraction process of Argan oil by supercritical CO 2 were investigated using response surface methodology and mathematical modelling (Sovová's mathematical model). The fastest extraction kinetics corresponding to the optimal operating conditions were obtained at 400 bar, 333 K at a CO 2 flow rate of 0.11 kg corresponding to a residence time of about 8.8 min. A tocopherol rich oil can be obtained at the beginning of the extraction experiment.
Adil Mouahid, Magalie Claeys-Bruno, Isabelle Bombarda, Sandrine Amat, Andrea Ciavarella, et al.. Supercritical CO2 extraction of oil from Moroccan unroasted Argan Kernels: Effects of process parameters to produce cosmetic oil. Journal of CO2 Utilization, 2022, 59, pp.101952. ⟨10.1016/j.jcou.2022.101952⟩. ⟨hal-03818747⟩
Adil Mouahid, Isabelle Bombarda, Magalie Claeys-Bruno, Sandrine Amat, Emmanuelle Myotte, et al.. Supercritical CO2 extraction of Moroccan argan (Argania spinosa L.) oil: Extraction kinetics and solubility determination. Journal of CO2 Utilization, 2021, 46, pp.101458. ⟨10.1016/j.jcou.2021.101458⟩. ⟨hal-03142714⟩ Plus de détails...
Experimental and modelling investigations of supercritical CO 2 extraction of oil from Argania spinosa L. kernels were conducted at pressure range from 200 to 400 bar, temperature range of 313-333 K at a CO 2 flow rate of 0.14 kg/h. Regardless of the pressure and the temperature, the highest achievable yield was estimated at 0.63 kg oil / kg biomass. The extraction kinetics were modeled with Sovová's broken and intact cells model. The extraction of type B was found to be the most suited extraction type. Argan oil solubility in supercritical CO 2 was determined and modelled with the Chrastil equation. A retrograde solubility behaviour was observed at 200 bar and the faster extraction kinetics were found at 400 bar and 333 K. The total tocopherols concentration was found between 389.7 and 1688.6 mg/kg extract. Experiments were performed on unroasted and roasted kernels.
Adil Mouahid, Isabelle Bombarda, Magalie Claeys-Bruno, Sandrine Amat, Emmanuelle Myotte, et al.. Supercritical CO2 extraction of Moroccan argan (Argania spinosa L.) oil: Extraction kinetics and solubility determination. Journal of CO2 Utilization, 2021, 46, pp.101458. ⟨10.1016/j.jcou.2021.101458⟩. ⟨hal-03142714⟩