Numerical simulation of coherent structures over plant canopy

This paper reports large eddy simulations of the interaction between an atmospheric boundary layer and a canopy (representing a forest cover). The problem is studied for a homogeneous configuration representing the situation encountered above a continuous forest cover, as well as for a heterogeneous configuration representing the situation similar to an edge or a clearing in a forest. The numerical results reproduces correctly all the main characteristics of this flow as reported in the literature: the formation of a first generation of coherent structures aligned transversally with the wind flow direction, the reorganization and the deformation of these vortex tubes into horse-shoe structures. The results obtained when introducing a discontinuity in the canopy (reproducing a clearing or a fuel break in a forest), are compared with the experimental data collected in a wind tunnel; here, the results confirm the existence of a strong turbulence activity inside the canopy at a distance equal to 8 times the height of the canopy, referenced in the literature as the Enhance Gust Zone (EGZ) characterized by a local peak of the skewness factor.

Konstantin Gavrilov, Gilbert Accary, Dominique Morvan, Dimitry Lyubimov, Sofiane Meradji, et al.. Numerical simulation of coherent structures over plant canopy. Flow, Turbulence and Combustion, 2011, 86 (1), pp.89-111. ⟨10.1007/s10494-010-9294-z⟩. ⟨hal-01022574⟩

Journal: Flow, Turbulence and Combustion

Date de publication: 01-01-2011

Auteurs:
  • Konstantin Gavrilov
  • Gilbert Accary
  • Dominique Morvan
  • Dimitry Lyubimov
  • Sofiane Meradji
  • Oleg A. Bessonov

Digital object identifier (doi): http://dx.doi.org/10.1007/s10494-010-9294-z

x >