Thermodynamique, Ondes, Numérique, Interfaces, Combustion

Effets thermiques dans les systèmes en rotation

Ondes et interfaces immergées

Modélisation des écoulements multiphasiques réactifs

Modélisation et simulation de la propagation des feux de forêts

Thermodynamique des mélanges

Thermodynamics, Numerical Waves, Interfaces, Combustion Team
Présentation

The TONIC team is developing an activity of modeling of strongly multi-scale phenomena. It covers in particular multiphase and/or reactive flows, from the scale of the isolated injector (a few mm) to the scale of a fully developed forest fire (several hectares). 
Adapted numerical methods are developed in parallel, in particular for soil imaging (detection of slicks by acoustic analysis), or for the modeling of radiative transfers.

In parallel to these multi-scale developments, analytical work is carried out to support the construction of models. An important research effort is devoted to the modeling of the thermodynamics of multiphase mixtures (thermochemical equilibrium calculations, complex thermodynamic closures), or to the development of reduced kinetic models for combustion.

Responsable

  • Chargé de Recherche CNRS - HDR
    équipe Thermodynamique Ondes Numérique Interfaces Combustion
x >

Annuaire personnel permanent

  • Chargé de Recherche CNRS - HDR
    équipe Thermodynamique Ondes Numérique Interfaces Combustion
  • Professeur des Universités AMU - émérite
    équipe Thermodynamiques, Ondes, Numérique, Interfaces et Combustion
  • Professeur des Universités AMU - émérite
    équipe Thermodynamique Ondes Numérique Interfaces Combustion
  • Chargée de Recherche CNRS
    équipe Thermodynamiques, Ondes, Numérique, Interfaces et Combustion
  • Maître de Conférences AMU
    équipe Thermodynamique Ondes Numérique Interfaces Combustion
  • Maître de Conférences AMU - HDR
    équipe Thermodynamiques, Ondes, Numérique, Interfaces et Combustion
x >

Doctorants, Post-Doctorants et CDD

x >

Dernières publications de l'équipe

  • Kevin Turgut, Ashwin Chinnayya, Pierre Boivin, Omar Dounia. A simplified thermodynamically-consistent single-step mechanism for hydrogen combustion. International Journal of Hydrogen Energy, 2025, 177, pp.151527. ⟨10.1016/j.ijhydene.2025.151527⟩. ⟨hal-05404957⟩ Plus de détails...
  • A. Fayet, Pierre Boivin, J. Perez Manes, S. Mimouni, T. Cadiou. Validation of NEPTUNE_CFD for single-phase natural convection. Nuclear Engineering and Design, 2025, 442, pp.114250. ⟨10.1016/j.nucengdes.2025.114250⟩. ⟨hal-05344238⟩ Plus de détails...
  • Marc Le Boursicaud, Song Zhao, Jean-Louis Consalvi, Pierre Boivin. Modeling self-ignition of high-pressure hydrogen leaks in confined space. Combustion and Flame, 2025, 280, pp.114386. ⟨10.1016/j.combustflame.2025.114386⟩. ⟨hal-05344209⟩ Plus de détails...
  • Xi Deng, Bin Xie, Omar Matar, Pierre Boivin. A novel hybrid approach for accurate simulation of compressible multi-component flows across all-Mach number. Journal of Computational Physics, 2025, 540, pp.114282. ⟨10.1016/j.jcp.2025.114282⟩. ⟨hal-05343677⟩ Plus de détails...
  • Jinhua Lu, Song Zhao, Pierre Boivin. A lattice-Boltzmann inspired finite volume solver for compressible flows. Computers and Mathematics with Applications, 2025, 187, pp.50-71. ⟨10.1016/j.camwa.2025.03.007⟩. ⟨hal-05086335v1⟩ Plus de détails...
x >

Dernières rencontres scientifiques

Projets en cours

Soutenances de thèses et HDR

22 janvier 2026 - Study of Combustion Instabilities Using Lattice-Boltzmann Methods / PhD Defense Ziyin Chen
Doctorante : Ziyin CHEN

Date et lieu : le jeudi 22 janvier 2026 à 13h45; amphi No.1 de Centrale Méditerranée

Abstract: Driven by climate change and the energy transition, hydrogen has emerged as a promising alternative to fossil fuels due to its efficient, carbon-free combustion. However, hydrogen–air flames exhibit strong instabilities, which are amplified in confined environments where wall effects and heat losses play a key role. Understanding these phenomena is essential for the safe design of micro-scale combustion devices.

This thesis investigates the stability of premixed hydrogen–air flames in a Hele-Shaw burner using the Lattice-Boltzmann method. Hydrodynamic and thermodiffusive instabilities are analyzed in both two- and three-dimensional configurations, with and without heat losses at the walls. The simulations reveal the conditions for symmetry breaking and quantify the influence of the Lewis number, channel width, and wall heat losses on flame morphology and propagation speed. Reduced-order models are developed to predict flame front geometry, cusp formation, and flame speed evolution.

These results improve the understanding of confined hydrogen flames and provide predictive tools for the design of safe and efficient micro-combustion systems.

Keywords: Flame instabilities, Laminar flame, Confined flow, Hele-Shaw burner

Jury
Carmen JIMENEZ ; CIEMAT, Madrid ; Rapporteure
Laurent SELLE ; CNRS IMFT, Toulouse ; Rapporteur
Andrea GRUBER ; SINTEF, Trondheim ; Examinateur
Heinz PITSCH ; RWTH Aachen University, Aachen ; Examinateur
Luc VERVISCH ; INSA Rouen Normandie, Saint-Etienne-du-Rouvray ; Président de jury
Pierre BOIVIN ; CNRS M2P2 ; Directeur de thèse
Christophe ALMARCHA ; Aix-Marseille Université ; Co-Directeur de thèse
Bruno DENET ; Aix-Marseille Université ; Co-Encadrant de thèse
13 janvier 2026 - Hybrid Lattice-Boltzmann method for multiphase flows / PhD Defense Thomas Gregorczyk
Doctorant : Thomas GREGORCZYK 

Date et lieu : le mardi 13 janvier à 14h00, amphi n°3 de Centrale Méditerranée

Abstract: The goal of this PhD is to present new numerical schemes that are able to carry out multiphase flows simulations. The method will lie in the framework of Lattice-Boltzmann methods that have been actively developed at M2P2 for several years for different applications : compressible flows, reactive flows, detonation, fluid-structure interaction, ...
This work aims at creating a stable scheme for athermal configurations at different density ratios and Reynolds numbers. Recent progress from the lab will be added to the multiphase LBM framework : a hybrid scheme solving an Allen-Chan with a finite volume solver, low-Mach number approximation, conservative scheme.

These new models will be tested thanks to different methods. First, we will make sure analytically that our scheme converges to a relevant set of macroscopic equations. Then, we will test these schemes against classical academical test cases such as : Poiseuille, Laplace, Rayleigh-Taylor, ...

The final target test case will be a jet which requires high Reynolds number flows simulations, inlet / outlet boundary conditions and which is useful for a wide range of applications.

Jury :
Raphaël LOUBÈRE, Rapporteur, DR CNRS, Institut de Mathématiques de Bordeaux 
Timm KRÜGER, Rapporteur, PR, University of Edinburgh                   
Gauthier WISSOCQ, Examinateur, IR, CEA CESTA                                 
Bénédicte CUENOT, Examinatrice, Senior Scientist, CERFACS                     
Vincent MOUREAU, Président du jury, DR CNRS, CORIA                                
Pierre BOIVIN, Directeur de thèse, CR CNRS, M2P2                                 
Song ZHAO, Co-encadrant de thèse, IR CNRS, M2P2