By clicking on the button below, you can consult the list of the laboratory's latest scientific publications in the "M2P2’s HAL collection”, which can be searched by year, author, type of document (scientific article, book, book chapter, conference proceedings, etc.).
For a certain number of articles, you have access to the full text in post-print or publisher pdf format.
N. Fedorczak, C. Arnas, L. Cappelli, L. Colas, Y. Corre, et al.. Survey of tungsten gross erosion from main plasma facing components in WEST during a L-mode high fluence campaign. Nuclear Materials and Energy, 2024, 41 (4), pp.101758. ⟨10.1016/j.nme.2024.101758⟩. ⟨cea-04816563⟩ Plus de détails...
An initial high fluence campaign was performed in WEST, in 2023, on the newly installed actively cooled tungsten divertor composed of ITER-grade monoblocks. The campaign consisted in the repetition of a 60 s long Deuterium L-mode pulse in attached divertor conditions, cumulating over 10000s of plasma exposure. A maximum deuterium fluence of approximately 5 ⋅ 10 26 m -2 was reached in the outer strike point region, representative of a few high performance ITER pulses. Gross tungsten erosion inferred from visible spectroscopy shows that the most eroded plasma facing component is the inner divertor target with rates ten times larger than on the outer divertor target. The outer midplane tungsten bumpers, located a few centimeters from the plasma, show gross erosion rates two times lower than at the outer divertor. We conclude that the outer midplane bumpers have a negligible contribution to the long range tungsten migration and deposition onto the lower divertor. The cumulated gross erosion rate on the inner divertor translates in an effective gross erosion thickness of about 20 μm, while it is about 2 μm for the outer divertor. Strikingly, these orderings coincide with the thickness of deposits found locally on the divertor: the exposed surfaces of high field side monoblocks are covered with several tens of μm tungsten deposits, while on the lower field side, few μm thin tungsten deposits are only found on the magnetically shadowed parts of monoblocks. The strong impact of those deposits on WEST operation, namely perturbation of surface temperature measurement with infra-red thermography, and the emission of flakes causing radiative perturbation of the confined plasma, calls for anticipating similar issues in ITER. In particular, the start of research operation shall consider the definition of a divertor erosion budget in order to anticipate the formation of deleterious deposits.
N. Fedorczak, C. Arnas, L. Cappelli, L. Colas, Y. Corre, et al.. Survey of tungsten gross erosion from main plasma facing components in WEST during a L-mode high fluence campaign. Nuclear Materials and Energy, 2024, 41 (4), pp.101758. ⟨10.1016/j.nme.2024.101758⟩. ⟨cea-04816563⟩
J. Garcia Sarmiento, Florian Fichot, Vincent Topin, P. Sagaut. Numerical simulation of corium flow through rod bundle and/or debris bed geometries with a model based on Lattice Boltzmann method. Nuclear Engineering and Design, 2024, 429, pp.113603. ⟨10.1016/j.nucengdes.2024.113603⟩. ⟨hal-04874958⟩ Plus de détails...
A new model is proposed to investigate the relocation and the distribution of hot corium flows in different configurations (rod bundle, porous debris bed) representative of a severe accident in a Light Water Reactor (LWR). Our model relies on the coupling between a modified Lattice Boltzmann Method (LBM), called Free-Surface LBM, that solves hydrodynamics of unsaturated corium and a Finite Volume Method (FVM) that solves heat transfers. Corium solidification and melting are addressed by implementing a correlation between the temperature and the viscosity. Several simulations on representative elementary volumes were performed, varying configurations (debris bed, rod bundle with and without grid). From the results, it is possible to capture important details of the flow at a scale lower than the pore scale and, at the same time, it is possible to take into account the average effects at the scale of several pores. Presented as a proof of concept these preliminary studies show the interest of this kind of CFD approach to identify which parameters at microstructure scale can potentially govern the corium relocation kinetics at macroscopic scale. It will provide useful information that might improve core degradation models in severe accident codes, such as ASTEC.
J. Garcia Sarmiento, Florian Fichot, Vincent Topin, P. Sagaut. Numerical simulation of corium flow through rod bundle and/or debris bed geometries with a model based on Lattice Boltzmann method. Nuclear Engineering and Design, 2024, 429, pp.113603. ⟨10.1016/j.nucengdes.2024.113603⟩. ⟨hal-04874958⟩
Enrique de Dios Zapata Cornejo, David Zarzoso, S.D. Pinches, Andres Bustos, Alvaro Cappa, et al.. A novel unsupervised machine learning algorithm for automatic Alfvénic activity detection in the TJ-II stellarator. Nuclear Fusion, 2024, 64 (12), pp.126057. ⟨10.1088/1741-4326/ad85f4⟩. ⟨hal-04540368⟩ Plus de détails...
A novel sparse encoding algorithm is developed to detect and study plasma instabilities automatically. This algorithm, called Elastic Random Mode Decomposition, is applied to the Mirnov coil signals of a dataset of 1291 discharges of the TJ-II stellarator, enabling the identification of the Alfvénic activity. In the presented approach, each signal is encoded as a collection of basic waveforms called atoms, drawn from a signal’s dictionary. Then the modes are identified using clustering and correlations with other plasma signals. The performance of the proposed algorithm is dramatically increased by using elastic net regularization and taking advantage of GPU architectures, hence the signal size and the number of dictionary elements are no longer limiting factors for encoding complex signals. Once the modes are retrieved from the shots, they can be easily analyzed with standard clustering techniques, thereby describing the physical mode characteristics of this subset of TJ-II shots. The clustering features consider the relationship with the plasma current Ip, the diamagnetic energy W, and inverse squared root electronic density 1/√n, profiling different subtypes of Alfvénic activity. The proposed algorithm can potentially create large databases of labeled modes with unprecedented detail.
Enrique de Dios Zapata Cornejo, David Zarzoso, S.D. Pinches, Andres Bustos, Alvaro Cappa, et al.. A novel unsupervised machine learning algorithm for automatic Alfvénic activity detection in the TJ-II stellarator. Nuclear Fusion, 2024, 64 (12), pp.126057. ⟨10.1088/1741-4326/ad85f4⟩. ⟨hal-04540368⟩
Julian Wailliez, Paul Regazzi, Anniina Salonen, Paul G Chen, Marc Jaeger, et al.. Drop deformation in a planar elongational flow: impact of surfactant dynamics. Soft Matter, 2024, 20 (44), pp.8793-8803. ⟨10.1039/D4SM00642A⟩. ⟨hal-04740537v2⟩ Plus de détails...
Drops in extensional flow undergo a deformation, which is primarily fixed by a balance between their surface tension and the viscous stress. This deformation, predicted and measured by Taylor on millimetric drops, is expected to be affected by the presence of surfactants but has never been measured systematically. We provide a controlled experiment allowing to measure this deformation as a function of the drop size and of the shear stress for different surfactants at varying concentrations. Our observation is that the deformation predicted by Taylor is recovered at zero and high surfactant concentration, whereas it is smaller at concentrations close to the critical micellar concentration. This is in contradiction with the existing analytical models. We develop a new analytical model, taking into account the surfactant dynamics. The model predicts a transition between a deformation similar to the one of a pure liquid and a smaller one. We show that the transition is driven by a parameter K_L , which compares adsorption and desorption dynamics. Finally, the concentration C* , at which we observe this transition in the extensional flow is in good agreement with the one predicted by independent measurement of K_L .
Julian Wailliez, Paul Regazzi, Anniina Salonen, Paul G Chen, Marc Jaeger, et al.. Drop deformation in a planar elongational flow: impact of surfactant dynamics. Soft Matter, 2024, 20 (44), pp.8793-8803. ⟨10.1039/D4SM00642A⟩. ⟨hal-04740537v2⟩
Stefano Di Genova, Alberto Gallo, Luca Cappelli, Nicolas Fedorczak, Hugo Bufferand, et al.. Global analysis of tungsten migration in WEST discharges using numerical modelling. Nuclear Fusion, 2024, ⟨10.1088/1741-4326/ad82f9⟩. ⟨hal-04739577⟩ Plus de détails...
Plasma discharges in the tungsten (W) Environment Steady-state Tokamak (WEST) are strongly impacted by W contamination. In WEST experiments, due to W contamination, the power radiated in the plasma (PRad) is on average, around 50% of the total power injected into the plasma (PTOT). Furthermore, this radiated power fraction (fRad) is almost insensitive to plasma conditions. The causes behind this experimental trend are not fully understood. In this contribution, a 3D numerical model is used to analyze the W migration in the WEST boundary plasma in different plasma scenarios. The WEST experimental database is sampled to obtain a scan of simulation input parameters. These parameters mimic the WEST plasma conditions over a chosen experimental campaign. The simulation results are compared to WEST diagnostics measurements (reflectometry, Langmuir probes, and visible spectroscopy) to verify that the simulated plasma conditions are representative of the WEST database. The W contamination trend is analysed: the W density (nW) strongly decreases when the radial distance between the separatrix and WEST antennas (Radial Outer Gap, ROG) increases. On the other hand, at a given ROG, nW increases proportionally with the power entering the scrape-off layer (PSOL). PRad is estimated with a simple 0D model. For a fixed ROG, fRad is not sensitive to plasma conditions. These trends are qualitatively and, at times, quantitatively comparable to what is observed in WEST experiments: the simulated trends are related to the poorly screened W influx caused by the erosion of the main chamber Plasma-Facing Components (PFCs). Thus, this numerical analysis suggests a possible interpretation of WEST experimental trends.
Stefano Di Genova, Alberto Gallo, Luca Cappelli, Nicolas Fedorczak, Hugo Bufferand, et al.. Global analysis of tungsten migration in WEST discharges using numerical modelling. Nuclear Fusion, 2024, ⟨10.1088/1741-4326/ad82f9⟩. ⟨hal-04739577⟩
M. Scotto D’abusco, I. Kudashev, G. Giorgiani, Anna Glasser, F. Schwander, et al.. First integrated core-edge fluid simulation of ITER’s Limiter-Divertor transition with SolEdge-HDG. Nuclear Materials and Energy, 2024, pp.101750. ⟨10.1016/j.nme.2024.101750⟩. ⟨hal-04720290⟩ Plus de détails...
This work explores the Limiter-Divertor transition (L-D) during the current ramp-up of ITER's Q=10 baseline plasma scenario at various central line-integrated density n_(li) values. The analysis, based on transport simulations performed with the latest version of SoleEdge-HDG, focuses on the time evolution of heat and ion particle fluxes, revealing regions of elevated temperature on the inner wall and plasma-facing components (PFCs) despite moderate loads.The investigation also delves into the effects of perpendicular convection flux terms on density build-up, comparing different formulations and their interplay with auxiliary heating sources. Furthermore, the paper shows the impact of taking into account the evolution of the parallel neutral momentum on plasma and neutral density at the targets in the context of an ITER steady-state scenario.
M. Scotto D’abusco, I. Kudashev, G. Giorgiani, Anna Glasser, F. Schwander, et al.. First integrated core-edge fluid simulation of ITER’s Limiter-Divertor transition with SolEdge-HDG. Nuclear Materials and Energy, 2024, pp.101750. ⟨10.1016/j.nme.2024.101750⟩. ⟨hal-04720290⟩
Alessandro Amadei, Maria Paola Bracciale, Martina Damizia, Paolo de Filippis, Benedetta de Caprariis, et al.. Hydrothermal Liquefaction of Organic Waste Model Compounds: The Effect of the Heating Rate on Biocrude Yield and Quality from Mixtures of Cellulose–Albumin–Sunflower Oil. ACS Omega, 2024, 9 (40), pp.41194-41207. ⟨10.1021/acsomega.4c01510⟩. ⟨hal-04891022⟩ Plus de détails...
Hydrothermal liquefaction (HTL) is a promising technology for the conversion of high-moisture biomass into a liquid biofuel precursor without predrying treatment. This study investigated the effects of the heating rate (20-110 °C/min) and feedstock composition on phase repartition of the HTL products. HTL tests were carried out using as feedstocks cellulose, egg albumin, and sunflower oil as model compounds for carbohydrates, proteins, and lipids, alone and in binary mixtures. The biocrude, solid residue, and aqueous phase were characterized in terms of composition and elemental percentage. The effects of binary interactions were studied in terms of product yields and compositions. It was observed that higher heating rates resulted in lower solid yields from all the cellulose-containing feedstocks and, in most cases, in higher biocrude yields and higher energy recovery. The results showed that the heating rate influences also the oil composition. Biocrude and solid yields were compared with their prediction based on the combination of the yields of single model compounds, showing a general increase in biocrude yields and a decrease in solid yields. The most significant deviation is observed with the mixture cellulose-albumin both for the biocrude and solid yields. In fact, the main interactions were recognized for carbohydrate-protein mixtures followed by carbohydrate-lipid and protein-lipid mixtures.
Alessandro Amadei, Maria Paola Bracciale, Martina Damizia, Paolo de Filippis, Benedetta de Caprariis, et al.. Hydrothermal Liquefaction of Organic Waste Model Compounds: The Effect of the Heating Rate on Biocrude Yield and Quality from Mixtures of Cellulose–Albumin–Sunflower Oil. ACS Omega, 2024, 9 (40), pp.41194-41207. ⟨10.1021/acsomega.4c01510⟩. ⟨hal-04891022⟩
H Betar, David Zarzoso, Jacobo Varela, Diego Del-Castillo-Negrete, Luis Garcia, et al.. Transport and losses of energetic particles in tokamaks in the presence of Alfvén activity using the new full orbit TAPaS code coupled to FAR3d. Nuclear Fusion, 2024, ⟨10.1088/1741-4326/ad7c66⟩. ⟨hal-04541528v2⟩ Plus de détails...
Recent developments and tools integrated into the TAPaS code are presented, enabling realistic scenario simulations of particle dynamics within experimental tokamak magnetic equilibria. In particular, the enhanced capabilities of TAPaS enable seamless coupling with external simulations, provided the metric and equilibrium magnetic field of the external code are known. Coupling TAPaS with the gyro-fluid code FAR3d, the transport and losses of energetic particles in the presence Alfvén eigenmodes (AEs) in DIII-D plasma discharge #159243 were investigated. Detailed analyses of prompt losses with and without collisions were performed. Then, further analysis was performed in the presence of electromagnetic perturbations resulting from AEs activity. The results indicate that, for the energies and the initial conditions considered here, the presence of AEs enhances the particle losses.
H Betar, David Zarzoso, Jacobo Varela, Diego Del-Castillo-Negrete, Luis Garcia, et al.. Transport and losses of energetic particles in tokamaks in the presence of Alfvén activity using the new full orbit TAPaS code coupled to FAR3d. Nuclear Fusion, 2024, ⟨10.1088/1741-4326/ad7c66⟩. ⟨hal-04541528v2⟩
Q. Mao, Umberto d'Ortona, J. Favier. Hydrodynamic coupling of a cilia–mucus system in Herschel–Bulkley flows. Journal of Fluid Mechanics, 2024, 994, pp.A8. ⟨10.1017/jfm.2024.600⟩. ⟨hal-04735292⟩ Plus de détails...
The yield stress and shear thinning properties of mucus are identified as critical for ciliary coordination and mucus transport in human airways. We use here numerical simulations to explore the hydrodynamic coupling of cilia and mucus with these two properties using the Herschel–Bulkley model, in a lattice Boltzmann solver for the fluid flow. Three mucus flow regimes, i.e. a poorly organized regime, a swirly regime, and a fully unidirectional regime, are observed and analysed by parametric studies. We systematically investigate the effects of ciliary density, interaction length, Bingham number and flow index on the mucus flow regime formation. The underlying mechanism of the regime formation is analysed in detail by examining the variation of two physical quantities (polarization and integral length) and the evolution of the flow velocity, viscosity and shear-rate fields. Mucus viscosity is found to be the dominant parameter influencing the regime formation when enhancing the yield stress and shear thinning properties. The present model is able to reproduce the solid body rotation observed in experiments (Loiseau et al. , Nat. Phys. , vol. 16, 2020, pp. 1158–1164). A more precise prediction can be achieved by incorporating non-Newtonian properties into the modelling of mucus as proposed by Gsell et al. ( Sci. Rep. , vol. 10, 2020, 8405).
Q. Mao, Umberto d'Ortona, J. Favier. Hydrodynamic coupling of a cilia–mucus system in Herschel–Bulkley flows. Journal of Fluid Mechanics, 2024, 994, pp.A8. ⟨10.1017/jfm.2024.600⟩. ⟨hal-04735292⟩
Adil Mouahid, Magalie Claeys-Bruno, Sébastien Clercq. A New Methodology Based on Experimental Design and Sovová’s Broken and Intact Cells Model for the Prediction of Supercritical CO2 Extraction Kinetics. Processes, 2024, 12 (9), pp.1865. ⟨10.3390/pr12091865⟩. ⟨hal-04791947⟩ Plus de détails...
Nowadays, supercritical CO2 extraction is highly regarded in industry, and several studies dealing with scale-up calculations aim to facilitate the transition from small scale to large scale. To complete this transition, it would be interesting to be able to predict supercritical CO2 extraction kinetics, which is the aim of this work. A new methodology based on the association of Sovová’s broken and intact cell model and response surface methodology was developed to predict SC-CO2 extraction kinetics from different biomass (Argan kernels, evening primrose, Punica granatum, Camellia sinensis, and dry paprika) at different operating conditions (200–700 bar, 40–60 °C, 0.14–10 kg/h) inside an operating domain. The absolute average relative deviations between the experimental and predicted data ranged from 1.86 to 29.03%, showing satisfactory reliability of this new methodology.
Adil Mouahid, Magalie Claeys-Bruno, Sébastien Clercq. A New Methodology Based on Experimental Design and Sovová’s Broken and Intact Cells Model for the Prediction of Supercritical CO2 Extraction Kinetics. Processes, 2024, 12 (9), pp.1865. ⟨10.3390/pr12091865⟩. ⟨hal-04791947⟩