Modélisation et simulation numérique de l'aérodynamique d'insectes / Modeling and numerical simulation of the aerodynamics of flapping flight
2016
Directeur de thèse : Kai Schneider
Nombre de thèses dirigées actuellement : 1
Co-directeur de thèse éventuel :
Adresse du directeur de thèse : M2P2-CNRS UMR 7340, 38 rue Joliot-Curie, 13453 Marseille cedex 13
Tél : 0491118529
Mél : kschneid@cmi.univ-mrs.fr
Financement : Demandé
Type de financement : Allocation MRE
Spécialité : Mécanique et Physique des Fluides
Sujet
Résumé Français : cf. version anglaise
Résumé Anglais : Flapping flight research is an intrinsically multidisciplinary activity, equally important for biologists and for engineers. The objective of this project is to develop efficient numerical tools for the fluid-structure interaction (FSI) in flapping flight. Earlier studies have demonstrated the usefulness of numerical modelling. Further progress requires constant improvement of computational techniques. One on the major recent areas of research is free flight manoeuvring stability and control, and it is believed that the wings deformation plays a significant role in these processes. It presents new challenges to the numerical modelling in terms of efficiency and accuracy. Therefore, the proposed work focuses on the development of an adaptive method for numerical simulation of animal free flight with flexible wings. The new development will be based on our previous work on a Navier-Stokes solver with volume penalization. While the fluid structure interaction can be simulated using the FSI extended volume penalization method, adaptive grid refinement has yet to be developed in this context. T. Engels, D. Kolomenskiy, K. Schneider and J. Sesterhenn. FluSI: A novel parallel simulation tool for flapping insect flight using a Fourier method with volume penalization. 06/2015, arXiv:1506.06513, submitted. D. Kolomenskiy, M. Maeda, T. Engels, H. Liu, K. Schneider and J.-C. Nave. Aerodynamic ground effect in fruitfly sized insect takeoff. 04/2015, arXiv:1504.04484. T. Engels, D. Kolomenskiy, K. Schneider and J. Sesterhenn. Numerical simulation of fluid-structure interaction with the volume penalization method. J. Comput. Phys., 281, 96-115, 2015. D. Kolomenskiy, J.-C. Nave and K. Schneider. Adaptive gradient-augmented level set method with multiresolution error estimation. J. Sci. Comput., 10.1007/s10915-015-0014-7, 03/2015, in press. D. Kolomenskiy, T. Engels and K. Schneider. Numerical Modelling of Flexible Heaving Foils. Journal of Aero Aqua Bio-mechanisms, 3(1), 22-28, 2013.
Débouchés : Académiques et privés