"Imprégnation supercritique de systèmes ophtalmiques à libération contrôlée" (thèse 2011-2015 + ATER)
Activités
systèmes à libération
contrôlée
imprégnation supercritique
implants
intraoculaires polymériques
principes actifs
polymères
Publications scientifiques au M2P2
2022
Dao Le, Amélie Frison, Yasmine Masmoudi, Abir Bouledjouidja, Pierre Thureau, et al.. Supercritical CO 2 impregnation process applied to polymer samples preparation for dynamic nuclear polarization solid‐state NMR. Magnetic Resonance in Chemistry, 2022, 60 (12), pp.1171-1177. ⟨10.1002/mrc.5307⟩. ⟨hal-03777975⟩ Plus de détails...
In this study, supercritical CO2 (scCO2) was used to impregnate polymers with paramagnetic polarizing agents to prepare samples for dynamic nuclear polarization (DNP) solid-state NMR (ssNMR) experiments. As a proof of concept, we impregnated polystyrene samples with bTbK, which stands for bis-TEMPO-bisketal where TEMPO is 2,2,6,6-tetra-methylpiperindin-1-oxyl. Substantial DNP signal enhancements could be measured on DNP-enhanced 1H → 13C cross-polarization (CP) magic-angle spinning (MAS) spectra recorded at 9.4 T and ~100 K, reaching a maximum value of 8 in the most favorable case, which appeared comparable or even higher than what is typically obtained on similar systems for former sample preparation methods. These results highlight the potential of scCO2 impregnation as an efficient and possibly versatile methodology to prepare polymer samples for DNP ssNMR investigations.
Dao Le, Amélie Frison, Yasmine Masmoudi, Abir Bouledjouidja, Pierre Thureau, et al.. Supercritical CO 2 impregnation process applied to polymer samples preparation for dynamic nuclear polarization solid‐state NMR. Magnetic Resonance in Chemistry, 2022, 60 (12), pp.1171-1177. ⟨10.1002/mrc.5307⟩. ⟨hal-03777975⟩
Abir Bouledjouidja, Yasmine Masmoudi, M. Sergent, Elisabeth Badens. Effect of operational conditions on the supercritical carbon dioxide impregnation of anti-inflammatory and antibiotic drugs in rigid commercial intraocular lenses. Journal of Supercritical Fluids, 2017, 130, pp.63 - 75. ⟨10.1016/j.supflu.2017.07.015⟩. ⟨hal-01578745⟩ Plus de détails...
Drug/lense combinations have proven significant in the field of ocular therapeutics. The development of innovative systems and elaboration processes is an upcoming issue for ocular drug delivery. One challenging issue is the elaboration of drug loaded intraocular lenses (IOLs) to combine cataract surgery and post-operative treatments in a single procedure. In this work, we are studying the elaboration of such systems while using a green process using supercritical fluids for impregnating ophthalmic drugs on commercial IOLs. More particularly, rigid commercial intraocular lenses made from Poly (Methyl MethAcrylate) (PMMA), used in cataract surgery, are loaded with dexamethasone 21- phosphate disodium salt (DXP, an anti-inflammatory drug) and ciprofloxacin (CIP, an antibiotic) in order to prevent short- and mid-term postoperative complications. Supercritical impregnations were carried out in a batch mode and impregnation yields were determined through drug release kinetic studies in a solution simulating the aqueous humor. Before performing an experimental design, preliminary impregnation assays were conducted in order to delimit the operating domain. Transparent IOLs presenting an effective impregnation were obtained. The highest impregnation yields for DXP and CIP in PMMA IOLs were 18.3 and 2.8 μgdrug/mgIOL respectively. Despite the low solubility of each drug in the fluid phase, homogeneous and in-depth impregnations were successfully obtained with a prolonged drug delivery (about 40 days) for most impregnation experiments.
Abir Bouledjouidja, Yasmine Masmoudi, M. Sergent, Elisabeth Badens. Effect of operational conditions on the supercritical carbon dioxide impregnation of anti-inflammatory and antibiotic drugs in rigid commercial intraocular lenses. Journal of Supercritical Fluids, 2017, 130, pp.63 - 75. ⟨10.1016/j.supflu.2017.07.015⟩. ⟨hal-01578745⟩
Abir Bouledjouidja, Yasmine Masmoudi, Michiel van Speybroeck, Laurent Schueller, Elisabeth Badens. Impregnation of Fenofibrate on mesoporous silica using supercritical carbon dioxide. International Journal of Pharmaceutics, 2016, 499, pp.1 - 9. ⟨hal-01266561⟩ Plus de détails...
Low oral bioavailability can be circumvented by the formulation of the poorly water soluble drug in ordered mesoporous silica (OMS-L-7). Fenofibrate is an orally administered, poorly water-soluble active pharmaceutical ingredient (API), used clinically to lower lipid levels. Fenofibrate was loaded into silica using two methods: incipient wetness and supercritical impregnation. This study investigates the impact of loading and the impact of varying supercritical carbon dioxide (scCO2) processing conditions. The objective is to enhance Fenofibrate loading into silica while reducing degree of the drug crystallinity, so as to increase the drug's dissolution rate and its bioavailability. The comparison of both impregnation processes was made in terms of impregnation yields and duration as well as physical characterization of the drug. While incipient wetness method led to a Fenofibrate loading up to 300 mgdrug/gsilica in 48 h of impregnation, the supercritical impregnation method yielded loading up to 485 mgdrug/gsilica in 120 min of impregnation duration, at 16 MPa and 308 K, with a low degree of crystallinity (about 1%) comparable to the crystallinity observed via the solvent method. In addition to the enhancement of impregnation efficiency, the supercritical route provides a solvent-free alternative for impregnation.
Abir Bouledjouidja, Yasmine Masmoudi, Michiel van Speybroeck, Laurent Schueller, Elisabeth Badens. Impregnation of Fenofibrate on mesoporous silica using supercritical carbon dioxide. International Journal of Pharmaceutics, 2016, 499, pp.1 - 9. ⟨hal-01266561⟩
Abir Bouledjouidja, Yasmine Masmoudi, Michelle Sergent, Vivek Trivedi, Abdeslam-Hassen Meniai, et al.. Drug loading of foldable commercial intraocular lenses using supercritical impregnation
. International Journal of Pharmaceutics, 2016, 500 (1-2), pp.85 - 99. ⟨10.1016/j.ijpharm.2016.01.016⟩. ⟨hal-01266557⟩ Plus de détails...
The drug delivery through intraocular lenses (IOLs) allows the combination of cataract surgery act and postoperative treatment in a single procedure. In order to prepare such systems, “clean” supercritical CO2 processes are studied for loading commercial IOLs with ophthalmic drugs. Ciprofloxacin (CIP, an antibiotic) and dexamethasone 21-phosphate disodium (DXP, an anti-inflammatory drug) were impregnated into foldable IOLs made from poly-2-hydroxyethyl methacrylate (P-HEMA). A first pre-treatment step was conducted in order to remove absorbed conditioning physiological solution. Supercritical impregnations were then performed by varying the experimental conditions. In order to obtain transparent IOLs and avoid the appearance of undesirable foaming, it was necessary to couple slow pressurization and depressurization phases during supercritical treatments. The impregnation yields were determined through drug release studies. For both drugs, release studies showdeep and reproducible impregnation for different diopters. For the system P-HEMA/CIP, a series of impregnations was performed to delimit the experimental range at two pressures (80 and 200 bar) in the presence or absence of ethanol as a co-solvent for two diopters (+5.0 D and +21.0 D). Increase in pressure in the absence of a co-solvent resulted in improved CIP impregnation. The addition of ethanol (5 mol%) produced impregnation yields comparable to those obtained at 200 bar without co-solvent. A response surface methodology based on experimental designs was used to study the influence of operating conditions on impregnation of IOLs (+21.0 D) in the absence of co-solvent. Two input variables with 5 levels each were considered; the pressure (80–200 bar) and the impregnation duration (30–240 min). CIP impregnation yields ranging between 0.92 and 3.83 μgCIP/mgIOL were obtained from these experiments and response surface indicated the pressure as a key factor in the process. The DXP impregnation in P-HEMA was higher than CIP at all the tested conditions (8.50–14.53 μgDXP/mgIOL). Furthermore, unlike CIP, highest DXP impregnation yields were obtained in the presence of ethanol as a co-solvent (5 mol%). NMR spectroscopy was performed to confirm complete removal of ethanol in the co-solvent-treated IOLs
Abir Bouledjouidja, Yasmine Masmoudi, Michelle Sergent, Vivek Trivedi, Abdeslam-Hassen Meniai, et al.. Drug loading of foldable commercial intraocular lenses using supercritical impregnation
. International Journal of Pharmaceutics, 2016, 500 (1-2), pp.85 - 99. ⟨10.1016/j.ijpharm.2016.01.016⟩. ⟨hal-01266557⟩