Thermodynamique, Ondes, Numérique, Interfaces, Combustion

Effets thermiques dans les systèmes en rotation

Ondes et interfaces immergées

Modélisation des écoulements multiphasiques réactifs

Modélisation et simulation de la propagation des feux de forêts

Thermodynamique des mélanges

Thermodynamics, Numerical Waves, Interfaces, Combustion Team
Présentation

The TONIC team is developing an activity of modeling of strongly multi-scale phenomena. It covers in particular multiphase and/or reactive flows, from the scale of the isolated injector (a few mm) to the scale of a fully developed forest fire (several hectares). 
Adapted numerical methods are developed in parallel, in particular for soil imaging (detection of slicks by acoustic analysis), or for the modeling of radiative transfers.

In parallel to these multi-scale developments, analytical work is carried out to support the construction of models. An important research effort is devoted to the modeling of the thermodynamics of multiphase mixtures (thermochemical equilibrium calculations, complex thermodynamic closures), or to the development of reduced kinetic models for combustion.

Responsable

  • Chargé de Recherche CNRS - HDR
    équipe Thermodynamique Ondes Numérique Interfaces Combustion
x >

Annuaire personnel permanent

  • Chargé de Recherche CNRS - HDR
    équipe Thermodynamique Ondes Numérique Interfaces Combustion
  • Professeur Centrale Méditerranée
    équipe Thermodynamiques, Ondes, Numérique, Interfaces et Combustion
  • Professeur des Universités AMU - émérite
    équipe Thermodynamiques, Ondes, Numérique, Interfaces et Combustion
  • Professeur des Universités AMU - émérite
    équipe Thermodynamique Ondes Numérique Interfaces Combustion
  • Chargée de Recherche CNRS
    équipe Thermodynamiques, Ondes, Numérique, Interfaces et Combustion
  • Maître de Conférences AMU - HDR
    équipe Thermodynamiques, Ondes, Numérique, Interfaces et Combustion
x >

Doctorants, Post-Doctorants et CDD

x >

Dernières publications de l'équipe

  • Hippolyte Lerogeron, Pierre Boivin, Vincent Faucher, Julien Favier. A Numerical Framework for Fast Transient Compressible Flows Using Lattice Boltzmann and Immersed Boundary Methods. International Journal for Numerical Methods in Engineering, 2025, 126 (3), ⟨10.1002/nme.7647⟩. ⟨hal-04958000⟩ Plus de détails...
  • Gabriel Meletti, Stéphane Abide, Uwe Harlander, Isabelle Raspo, Stéphane Viazzo. On the influence of the heat transfer at the free surface of a thermally driven rotating annulus. Physics of Fluids, 2025, 37 (3), pp.034101. ⟨10.1063/5.0248712⟩. ⟨hal-05007412⟩ Plus de détails...
  • Ksenia Kozhanova, Song Zhao, Raphaël Loubère, Pierre Boivin. A hybrid a posteriori MOOD limited lattice Boltzmann method to solve compressible fluid flows – LBMOOD. Journal of Computational Physics, 2025, 521, Part 2, pp.113570. ⟨10.1016/j.jcp.2024.113570⟩. ⟨hal-04802259⟩ Plus de détails...
  • J. Carmona, I. Raspo, V. Moureau, P. Boivin. A simple explicit thermodynamic closure for multi-fluid simulations including complex vapor–liquid equilibria: Application to NH3-H2O mixtures. International Journal of Multiphase Flow, 2025, 182, pp.105044. ⟨10.1016/j.ijmultiphaseflow.2024.105044⟩. ⟨hal-05007303⟩ Plus de détails...
  • Hippolyte Lerogeron, Vincent Faucher, Pierre Boivin, Julien Favier. LBM-based partitioned coupling for fast transient fluid-structure dynamics. Applied Mathematical Modelling, 2025, 149, pp.116274. ⟨10.1016/j.apm.2025.116274⟩. ⟨cea-05163942⟩ Plus de détails...
x >

Dernières rencontres scientifiques

Projets en cours

Soutenances de thèses et HDR

11 septembre 2025 - Simulations of CH4–H2 Combustion in Industrial Burners using the Lattice Boltzmann Method with Radiative Heat Transfer / Jose Luis Andres PhD Defense
Doctorant : Jose Luis ANDRES

Date et lieu : le 11 septembre à 14h00 ; amphi N°3 - Centrale Méditerranée, Plot 6, 38 rue Joliot-Curie, 13451 Marseille

Abstract:

The combustion of methane-hydrogen blends in industrial burners is a promising route to reducing greenhouse gas emissions. However, the complexity of the underlying physical phenomena makes numerical simulation both challenging and computationally expensive. Current industrial CFD tools, mostly based on RANS approaches, remain limited in capturing unsteady and localized combustion features. This thesis explores an alternative based on the Lattice Boltzmann Method (LBM) combined with a LES approach, capable of producing results consistent with experimental observations at a manageable computational cost.

The core contribution is the development and validation of an original P1-WSGG radiation model tailored to CH4-H2 mixtures. The model is solved using a Jacobi-type iterative algorithm and validated on several test cases. It is then applied to the simulation of a semi-industrial burner operating with CH4-H2 blends, with comparisons to experimental data and results from an industrial RANS code. The findings show that the LBM approach accurately captures radiative heat transfer, temperature fields, and pollutant formation, confirming its potential as a reliable alternative to conventional tools for simulating complex combustion systems.

Jury
Frédéric ANDRÉ, DR, CNRS, LOA, Université de Lille, Lille – Rapporteur
Omar DOUNIA, Chercheur HDR, Cerfacs, Toulouse – Rapporteur
Pascale DOMINGO, DR, CNRS, CORIA, Rouen – Examinatrice
Ronan VICQUELIN, Professeur, Université Paris-Saclay, Paris – Examinateur
Bruno DENET, Professeur, IRPHE, Marseille – Président du jury
Fouad SAID, Ingénieur, Fives Pillard, Marseille – Invité
Pierre BOIVIN, CR HDR, CNRS, M2P2, Marseille – Directeur de thèse
Jean-Louis CONSALVI, MCF HDR, IUSTI, Marseille – Co-directeur de thèse
3 juillet 2025 - Ignition of hydrogen-based fuels : application to safety / Marc Le Boursicaud PhD Defense
Doctorant : Marc LE BOURSICAUD

Date et lieu : le 3 juillet à 14h00 ; amphi N°3 - Centrale Méditerranée, Plot 6, 38 rue Joliot-Curie, 13451 Marseille

Abstract:

Hydrogen safety has long been a critical concern in the aerospace and nuclear sectors. However, the growing interest in hydrogen as an alternative fuel for transportation has introduced new safety challenges. Storage solutions for such applications typically involve high-pressure gaseous hydrogen tanks operating at pressures of up to 700 bar. These conditions differ significantly from those traditionally studied, necessitating the development of predictive tools to assess ignition risks under these extreme conditions.

This thesis began with the development of a passive scalar approach to predict hydrogen ignition using computational fluid dynamics (CFD) tools. This model significantly reduces the numerical stiffness of the governing equations and, consequently, computational costs compared to conventional detailed or reduced mechanisms, while accurately capturing the physical phenomena responsible for ignition, particularly for high-pressure applications.

The core of this research focused on shock-induced ignition in cases of high-pressure hydrogen leakage from tanks or pipes. These scenarios pose numerous challenges, including complex flow dynamics and strong scale separation between the hydrogen/air diffusion layer and the flow. Such conditions render direct numerical simulations (DNS) impractical. To address these challenges, a novel pseudo-1D flow solver was developed, combining 1D and 3D representations using planar and spherical coordinates within a unified formulation. This solver successfully reproduced flow dynamics across various geometries and pressure ranges and demonstrated applicability to other pressurized gases. Additionally, the scalar model was applied to predict ignition within the diffusion layer. The resulting methodology is particularly efficient in assessing the ignition risk of high-pressure hydrogen leaks and enables investigations into geometric effects, including leaks from 2D and 3D tanks or pipes.

This approach was further extended to evaluate the impact of obstacles placed near the leakage (such as those representative of engine compartments). The presence of such obstacles induces reflection of the leading shock wave and its interaction with the diffusion layer. The methodology was enhanced to account for these phenomena, revealing that confinement significantly affects ignition risk for certain geometries and should not be overlooked in safety analyses.

Finally, the study explored ignition of hydrogen-ammonia blends, which have garnered interest as alternatives to pure hydrogen. Analytical expressions were derived to predict ignition times for canonical cases, and a tailored version of the passive scalar approach was developed to model these blends effectively.

Jury
Nabiha Chaumeix / Directrice de recherche CNRS, ICARE / Rapporteure
Antonio Sánchez / Professeur, University of California San Diego / Rapporteur
Heinz Pitsch / Professeur, RWTH Aachen University / Examinateur
Josué Melguizo-Gavilanes / Chercheur, Shell ETCA / Examinateur
Arnaud Mura / Directeur de recherche CNRS, Pprime / Examinateur
Bruno Denet / Professeur, Aix-Marseille Université / Président du jury
Pierre Boivin / Chargé de recherche CNRS, M2P2 / Directeur de thèse
Jean-Louis Consalvi / Maître de conférences, Aix-Marseille Université / Co-directeur de thèse