Thermodynamique, Ondes, Numérique, Interfaces, Combustion

Effets thermiques dans les systèmes en rotation

Ondes et interfaces immergées

Modélisation des écoulements multiphasiques réactifs

Modélisation et simulation de la propagation des feux de forêts

Thermodynamique des mélanges

Thermodynamics, Numerical Waves, Interfaces, Combustion Team
Présentation

The TONIC team is developing an activity of modeling of strongly multi-scale phenomena. It covers in particular multiphase and/or reactive flows, from the scale of the isolated injector (a few mm) to the scale of a fully developed forest fire (several hectares). 
Adapted numerical methods are developed in parallel, in particular for soil imaging (detection of slicks by acoustic analysis), or for the modeling of radiative transfers.

In parallel to these multi-scale developments, analytical work is carried out to support the construction of models. An important research effort is devoted to the modeling of the thermodynamics of multiphase mixtures (thermochemical equilibrium calculations, complex thermodynamic closures), or to the development of reduced kinetic models for combustion.

Responsable

  • Chargé de Recherche CNRS - HDR
    équipe Thermodynamique Ondes Numérique Interfaces Combustion
x >

Annuaire personnel permanent

  • Chargé de Recherche CNRS - HDR
    équipe Thermodynamique Ondes Numérique Interfaces Combustion
  • Professeur Centrale Méditerranée
    équipe Thermodynamiques, Ondes, Numérique, Interfaces et Combustion
  • Professeur des Universités AMU - émérite
    équipe Thermodynamiques, Ondes, Numérique, Interfaces et Combustion
  • Professeur des Universités AMU - émérite
    équipe Thermodynamique Ondes Numérique Interfaces Combustion
  • Chargée de Recherche CNRS
    équipe Thermodynamiques, Ondes, Numérique, Interfaces et Combustion
  • Maître de Conférences AMU - HDR
    équipe Thermodynamiques, Ondes, Numérique, Interfaces et Combustion
x >

Doctorants, Post-Doctorants et CDD

x >

Dernières publications de l'équipe

  • Hippolyte Lerogeron, Pierre Boivin, Vincent Faucher, Julien Favier. A Numerical Framework for Fast Transient Compressible Flows Using Lattice Boltzmann and Immersed Boundary Methods. International Journal for Numerical Methods in Engineering, 2025, 126 (3), ⟨10.1002/nme.7647⟩. ⟨hal-04958000⟩ Plus de détails...
  • Gabriel Meletti, Stéphane Abide, Uwe Harlander, Isabelle Raspo, Stéphane Viazzo. On the influence of the heat transfer at the free surface of a thermally driven rotating annulus. Physics of Fluids, 2025, 37 (3), pp.034101. ⟨10.1063/5.0248712⟩. ⟨hal-05007412⟩ Plus de détails...
  • Ksenia Kozhanova, Song Zhao, Raphaël Loubère, Pierre Boivin. A hybrid a posteriori MOOD limited lattice Boltzmann method to solve compressible fluid flows – LBMOOD. Journal of Computational Physics, 2025, 521, Part 2, pp.113570. ⟨10.1016/j.jcp.2024.113570⟩. ⟨hal-04802259⟩ Plus de détails...
  • J. Carmona, I. Raspo, V. Moureau, P. Boivin. A simple explicit thermodynamic closure for multi-fluid simulations including complex vapor–liquid equilibria: Application to NH3-H2O mixtures. International Journal of Multiphase Flow, 2025, 182, pp.105044. ⟨10.1016/j.ijmultiphaseflow.2024.105044⟩. ⟨hal-05007303⟩ Plus de détails...
  • D. Morvan, G. Accary. How to Properly Account for Slope Effect in Byram’s Convective Number: A New Proposal. Fire Technology, 2024, ⟨10.1007/s10694-024-01670-1⟩. ⟨hal-04960163⟩ Plus de détails...
x >

Dernières rencontres scientifiques

Projets en cours

Soutenances de thèses et HDR

11 juin 2025 - Energétique, aérodynamique et intensification des jets d’arcs de coupage plasma / Soutenance de thèse de Frederic CAMY-PEYRET
Doctorant : Frederic CAMY-PEYRET 

Date et lieu : le 11 juin à 14h00 ; amphi N°3 - Centrale Méditerranée

Résumé : Le procédé de découpe plasma des matériaux conducteurs d’électricité, en particulier des métaux, est l’un des trois grands procédés de découpe thermique des tôles, avec le laser et l’oxycoupage. Ce procédé s’est progressivement répandu dans l’industrie depuis les années 70, et est aujourd’hui incontournable dans les activités de construction et de fabrication métallique. Les améliorations de cette technologie ont historiquement été apportées par les équipementiers industriels en utilisant une approche très empirique et technologique, probablement en raison de la faible intensité en R&D fondamentale du secteur, et surtout de la complexité multi-physique de la phénoménologie des jets plasmas utilisés en découpe des métaux. Ceux-ci peuvent en effet être décrits par un écoulement trans-sonique sous-détendu dans une tuyère sonique de taille millimétrique, au col de laquelle une colonne plasma fortement ionisée est chauffée au-delà de 20000 K par le passage d’un courant électrique.
La complexité de l’objet d’étude réside dans les nombreux effets physiques, souvent eux-mêmes difficiles à appréhender isolément, qui peuvent a priori contribuer à déterminer la structure du jet plasma : propriétés thermodynamiques et coefficients de transport du plasma, géométrie de la tuyère et son aérodynamique, pression, intensité du vortex, turbulence, transferts radiatifs à haute température, couplage électrostatique et électromagnétique entre le passage du courant et le plasma, phénomènes aux électrodes, …
Depuis les années 2000, et en collaboration avec le monde académique, certains acteurs industriels, ont engagé des approches plus fondamentales et scientifiques permettant de mieux comprendre et décrire ces objets technologiques, démarche à laquelle l’auteur a contribué depuis 25 ans.
Après un résumé de la carrière et des travaux de recherche menés ou supervisés par l’auteur dans les domaines connexes de la mécanique des fluides, de la combustion, des matériaux, et des procédés, la problématique abordée dans ce manuscrit de thèse portera donc sur l’étude de l’énergétique et de la phénoménologie des jets de plasmas d’arc transféré utilisés pour la découpe. Ce choix est d’abord celui du fil rouge scientifique et technologique le plus dense de mon expérience de chercheur industriel, et aussi un sujet dont la nature multi-physique a beaucoup bénéficié de l’expérience acquise dans d’autres spécialités.
Nous introduirons les technologies et les procédés, nous couvrirons les méthodes expérimentales et de simulation numérique utilisées, nous étudierons les échelles énergétiques à l’œuvre en découpe plasma en comparaison au procédé laser concurrent, et détaillerons les mécanismes d’apport et de distribution de l’énergie à la tôle. Nous présenterons les avancées dans la compréhension de la constriction de la colonne plasma à travers la description du fonctionnement de la tuyère jusqu’à son col sonique, avant de poursuivre vers l’aval en analysant la structure du jet plasma sous-détendu entre la tuyère et la tôle. Enfin, nous conclurons par l’étude de l’influence de la cohérence spatiale de la densité de puissance du plasma sur la précision de coupe et les mécanismes d’amélioration de celle-ci.

Mots clés : procédé de coupage plasma, plasma d’arc électrique, efficacité énergétique, découpe des aciers, jet plasma supersonique sous-détendu, adaptation aérodynamique, thermodynamique des plasmas thermiques, transferts thermiques à haut flux, intensification de la densité de puissance.

Jury
Stéphane PELLERIN  / Professeur, Université d'Orléans / Rapporteur
Luc VERVISCH  / Professeur, INSA de Rouen / Rapporteur
Françoise BATAILLE  / Professeur, Université de Perpignan Via Domitia / Examinatrice
Philippe ROBIN-JOUAN  / Fellow Expert, GE Vernova / Examinateur
Sergey GAVRILYUK  / Professeur, Aix-Marseille Université / Président du jury
Eric SERRE  / DR CNRS, M2P2 / Examinateur
Pierre BOIVIN  / CR CNRS, M2P2 / Directeur de thèse
Pierre FRETON  / Professeur, Université de Toulouse / Co-directeur de thèse
Bernard LABEGORRE  / Senior Expert, Air Liquide / Membre invité
21 février 2024 - Study of Thermoacoustic Instabilities using the Lattice Boltzmann Method / PhD Defense Karthik Bhairapurada
Doctorant : Karthik BHAIRAPURADA

Date : le mercredi 21 février 2024 à 14h00 dans l’amphithéâtre du LMA ; 4, impasse Nikola Tesla ; 13013 Marseille

Abstract : In the quest to address global warming, renewable energy has emerged as a critical focus. Yet, the reality of our current energy landscape makes the complete abandonment of combustion technologies unfeasible. Innovations such as 'Lean Burn' combustion and the integration of cleaner fuels like Hydrogen offer a compromise, balancing immediate energy demands with environmental objectives. However, these advancements also introduce significant challenges, especially the heightened risk of thermoacoustic instabilities in combustion systems, which could lead to catastrophic failures.
Traditional experimental methods for studying and mitigating these instabilities are not only prohibitively expensive but also often impractical. Consequently, there is a growing advocacy for the adoption of advanced numerical methods as efficient and cost-effective alternatives. This thesis underscores the potential of one such method, known as the Lattice Boltzmann Method (LBM). LBM is a numerical method renowned for its distinctive algorithmic structure that facilitates linear interactions between adjacent nodes and enables the local evaluation of non-linear terms. These inherent features endow LBM with computational efficiency and low dissipation properties for acoustics transport, making it a promising tool for simulating flame-acoustic interactions and addressing thermoacoustic instabilities.
This research validates the capabilities of LBM in effectively resolving such instabilities. Through foundational assertions of simple flame-acoustic interactions and simulations within narrow channels, the reliability of the method for investigating combustion instabilities across various scenarios is established. Furthermore, the thesis also explores the field of 'Combustion Noise', demonstrating the potential of LBM in investigating sound generation and propagation phenomena, particularly in hydrogen-fueled combustion scenarios. Finally, the robustness and versatility of LBM in handling thermoacoustic instabilities of turbulent reactive flows in complex geometries are demonstrated through the simulation of an aeronautical burner configuration called PRECCINSTA.
Overall, guided by the importance of innovative numerical methods in bridging the gap between current energy needs and long-term environmental sustainability, this thesis underscores the potential of LBM. Through varied investigations, it not only highlights the capabilities of the method but also contributes to a broader understanding of thermoacoustic phenomena across various settings.

Jury

Mr. Pierre BOIVIN                             Chargé de Recherche, CNRS, France                              Directeur de thèse
Mr. Bruno DENET                             Professeur, AMU, France                                                   Co-Directeur de thèse
Ms. Françoise BAILLOT                   Professeure, CORIA, France                                              Rapporteur
Mr. Vadim KURDYUMOV                 Senior Researcher, CIEMAT, Espagne                               Rapporteur
Mr. Luc VERVISCH                          Professeur, CORIA, France                                                Examinateur
Mr. Laurent GICQUEL                      Senior Researcher, CERFACS, France                              Examinateur
Mr. Julien FAVIER                            Professeur, AMU, France                                                    Président