Thermodynamique, Ondes, Numérique, Interfaces, Combustion

Effets thermiques dans les systèmes en rotation

Ondes et interfaces immergées

Modélisation des écoulements multiphasiques réactifs

Modélisation et simulation de la propagation des feux de forêts

Thermodynamique des mélanges

Thermodynamics, Numerical Waves, Interfaces, Combustion Team
Présentation

The TONIC team is developing an activity of modeling of strongly multi-scale phenomena. It covers in particular multiphase and/or reactive flows, from the scale of the isolated injector (a few mm) to the scale of a fully developed forest fire (several hectares). 
Adapted numerical methods are developed in parallel, in particular for soil imaging (detection of slicks by acoustic analysis), or for the modeling of radiative transfers.

In parallel to these multi-scale developments, analytical work is carried out to support the construction of models. An important research effort is devoted to the modeling of the thermodynamics of multiphase mixtures (thermochemical equilibrium calculations, complex thermodynamic closures), or to the development of reduced kinetic models for combustion.

Responsable

  • Chargé de Recherche CNRS - HDR
    équipe Thermodynamique Ondes Numérique Interfaces Combustion
x >

Annuaire personnel permanent

  • Chargé de Recherche CNRS - HDR
    équipe Thermodynamique Ondes Numérique Interfaces Combustion
  • Professeur des Universités AMU - émérite
    équipe Thermodynamiques, Ondes, Numérique, Interfaces et Combustion
  • Professeur des Universités AMU - émérite
    équipe Thermodynamique Ondes Numérique Interfaces Combustion
  • Chargée de Recherche CNRS
    équipe Thermodynamiques, Ondes, Numérique, Interfaces et Combustion
  • Maître de Conférences AMU
    équipe Thermodynamique Ondes Numérique Interfaces Combustion
  • Maître de Conférences AMU - HDR
    équipe Thermodynamiques, Ondes, Numérique, Interfaces et Combustion
x >

Doctorants, Post-Doctorants et CDD

x >

Dernières publications de l'équipe

  • Marc Le Boursicaud, Jean-Louis Consalvi, Pierre Boivin. Prediction of hydrogen–ammonia blends autoignition. Combustion and Flame, 2026, 285, pp.114713. ⟨10.1016/j.combustflame.2025.114713⟩. ⟨hal-05469163⟩ Plus de détails...
  • Ziyin Chen, Song Zhao, Bruno Denet, Christophe Almarcha, Pierre Boivin. A three-dimensional study on premixed flame propagation in narrow channels considering hydrodynamic and thermodiffusive instabilities. Combustion and Flame, 2025, 281, pp.114392. ⟨10.1016/j.combustflame.2025.114392⟩. ⟨hal-05344216⟩ Plus de détails...
  • Kevin Turgut, Ashwin Chinnayya, Pierre Boivin, Omar Dounia. A simplified thermodynamically-consistent single-step mechanism for hydrogen combustion. International Journal of Hydrogen Energy, 2025, 177, pp.151527. ⟨10.1016/j.ijhydene.2025.151527⟩. ⟨hal-05404957⟩ Plus de détails...
  • A. Fayet, Pierre Boivin, J. Perez Manes, S. Mimouni, T. Cadiou. Validation of NEPTUNE_CFD for single-phase natural convection. Nuclear Engineering and Design, 2025, 442, pp.114250. ⟨10.1016/j.nucengdes.2025.114250⟩. ⟨hal-05344238⟩ Plus de détails...
  • Marc Le Boursicaud, Song Zhao, Jean-Louis Consalvi, Pierre Boivin. Modeling self-ignition of high-pressure hydrogen leaks in confined space. Combustion and Flame, 2025, 280, pp.114386. ⟨10.1016/j.combustflame.2025.114386⟩. ⟨hal-05344209⟩ Plus de détails...
x >

Dernières rencontres scientifiques

Projets en cours

Soutenances de thèses et HDR

6 février 2026 - Study of turbulent transport of energetic particles in nuclear fusion plasmas nuclear fusion plasmas by trajectory simulations and artificial intelligence techniques / PhD Defense Benoît Clavier
Doctorant : Benoît CLAVIER

Date et lieu : le vendredi 6 février à 14h00, M2P2 - salle Labus, Centrale Méditerranée

Abstract: This thesis studies the turbulent transport of charged particles in magnetized fusion plasmas by combining reduced turbulence models, numerical trajectory simulations, and data-driven approaches based on artificial intelligence. After presenting the physical framework of radial transport in a tokamak and the Hasegawa–Wakatani model, Eulerian and Lagrangian diagnostics are developed to obtain reference transport measurements. The work then analyzes the transport of test particles in different turbulent regimes, highlighting the limitations of certain classical approximations and the complexity of energetic particle dynamics. The study is extended to a more realistic three-dimensional ion-temperature-gradient (ITG) turbulence, allowing scaling laws for radial diffusion to be established. Finally, a synthetic turbulence generation model based on a Convolutional Variational Autoencoder (CVAE) coupled with a dynamic model is proposed to efficiently reproduce turbulence and accelerate transport studies, illustrating the potential of data-driven approaches for future research in plasma physics.

Jury
David ZARZOSO-FERNANDEZ - Chargé de recherche - CNRS M2P2 - Directeur de thèse
Emmanuel FRéNOD - Professeur des universités  - Université Bretagne Sud - Co-directeur de thèse
Victor TRIBALDOS - Professeur des universités - Universidad Carlos III de Madrid - Rapporteur
Julien LE SOMMER - Directeur de recherche - CNRS, IGE Grenoble - Examinateur
Maxime LESUR - Professeur des universités - Université de Lorraine - Institut Jean Lamour - Rapporteur
Cédric VILLANI - Professeur des universités - Université Claude Bernard Lyon 1 - Examinateur
Mitra FOULADIRAD - Professeure des universités - Centrale Méditerranée - Président

22 janvier 2026 - Study of Combustion Instabilities Using Lattice-Boltzmann Methods / PhD Defense Ziyin Chen
Doctorante : Ziyin CHEN

Date et lieu : le jeudi 22 janvier 2026 à 13h45; amphi No.1 de Centrale Méditerranée

Abstract: Driven by climate change and the energy transition, hydrogen has emerged as a promising alternative to fossil fuels due to its efficient, carbon-free combustion. However, hydrogen–air flames exhibit strong instabilities, which are amplified in confined environments where wall effects and heat losses play a key role. Understanding these phenomena is essential for the safe design of micro-scale combustion devices.

This thesis investigates the stability of premixed hydrogen–air flames in a Hele-Shaw burner using the Lattice-Boltzmann method. Hydrodynamic and thermodiffusive instabilities are analyzed in both two- and three-dimensional configurations, with and without heat losses at the walls. The simulations reveal the conditions for symmetry breaking and quantify the influence of the Lewis number, channel width, and wall heat losses on flame morphology and propagation speed. Reduced-order models are developed to predict flame front geometry, cusp formation, and flame speed evolution.

These results improve the understanding of confined hydrogen flames and provide predictive tools for the design of safe and efficient micro-combustion systems.

Keywords: Flame instabilities, Laminar flame, Confined flow, Hele-Shaw burner

Jury
Carmen JIMENEZ ; CIEMAT, Madrid ; Rapporteure
Laurent SELLE ; CNRS IMFT, Toulouse ; Rapporteur
Andrea GRUBER ; SINTEF, Trondheim ; Examinateur
Heinz PITSCH ; RWTH Aachen University, Aachen ; Examinateur
Luc VERVISCH ; INSA Rouen Normandie, Saint-Etienne-du-Rouvray ; Président de jury
Pierre BOIVIN ; CNRS M2P2 ; Directeur de thèse
Christophe ALMARCHA ; Aix-Marseille Université ; Co-Directeur de thèse
Bruno DENET ; Aix-Marseille Université ; Co-Encadrant de thèse