Cesium removal from contaminated sand by supercritical CO2 extraction
Supercritical CO2 extraction is a promising process among existing decontamination methods. Feasibility of supercritical CO2 extraction processing for decontamination of contaminated soils has been studied with non-radioactive cesium as contaminant. Extractant system considered was a mixture of DB18C6 crown ether and HPFOA that gave a synergistic effect when combined. Process parameters influence such as operating pressure (25–29 MPa) and temperature (40–80 °C), initial cesium/extractant/cationic exchanger amounts (molar ratio between 1/12/12 and 1/100/100) and soil moisture (0–6%wt) has been tested. Low temperature (40 °C) and high pressure (29 MPa) allow to optimize process ability for cesium removal. A compromise should be established, for a fixed CO2 flow rate, between amounts of extractants and cationic exchangers. Efficiency of cesium removal seems to be optimized at 3%wt matrix moisture. Extraction from sand is successful with yields up to 95%.
Antoine Leybros, Agnès Grandjean, Nathalie Segond, Marc Messalier, Olivier Boutin. Cesium removal from contaminated sand by supercritical CO2 extraction. Journal of Environmental Chemical Engineering, 2016, 4 (1), pp.1076-1080. ⟨10.1016/j.jece.2016.01.009⟩. ⟨hal-01300394⟩
Journal: Journal of Environmental Chemical Engineering
Date de publication: 01-03-2016
Auteurs:
-
Antoine Leybros
-
Agnès Grandjean
-
Nathalie Segond
-
Marc Messalier
- Olivier Boutin