Publications de l'équipe Instabilités, Turbulence & Contrôle
2021
H. Bufferand, J. Bucalossi, G. Ciraolo, G. Falchetto, A. Gallo, et al.. Progress in edge plasma turbulence modelling hierarchy of models from 2D transport application to 3D fluid simulations in realistic tokamak geometry. Nuclear Fusion, IOP Publishing, 2021, 61 (11), pp.116052. ⟨10.1088/1741-4326/ac2873⟩. ⟨hal-03377162⟩ Plus de détails...
This contribution presents the recent effort at CEA and French federation for Fusion to simulate edge plasma transport with the new code SOLEDGE3X. The latter can be used both as a 2D transport code or as a 3D turbulence code. It makes possible simulating edge plasma up to the first wall including the complex wall geometry. It also includes neutral recycling and impurity sputtering, seeding and transport. In order to improve turbulence description in transport simulation, a reduced model for turbulence intensity prediction has been derived and implemented, based on "kepsilon" like models from the neutral fluid community. Applications to a JET L-mode detached plasma and to a WEST plasma are used as illustration of the code abilities
H. Bufferand, J. Bucalossi, G. Ciraolo, G. Falchetto, A. Gallo, et al.. Progress in edge plasma turbulence modelling hierarchy of models from 2D transport application to 3D fluid simulations in realistic tokamak geometry. Nuclear Fusion, IOP Publishing, 2021, 61 (11), pp.116052. ⟨10.1088/1741-4326/ac2873⟩. ⟨hal-03377162⟩
Pierre Magnico. Molecular dynamics study on water and hydroxide transfer mechanisms in PSU-g-alkyl-TMA membranes at low hydration: Effect of side chain length. International Journal of Hydrogen Energy, Elsevier, 2021, 46 (68), pp.33915-33933. ⟨10.1016/j.ijhydene.2021.07.081⟩. ⟨hal-03358207⟩ Plus de détails...
Molecular dynamics simulations with anion exchange membranes (alkyl trimethyl ammonium grafted onto polysulfone) are performed to investigate the influence of the spacer length on the transport properties, on the molecular exchange mechanisms between the functional group and the aqueous phase and on the hydrogen bond network. This is especially insightful that in this work the hydration number is small. In this condition the aqueous phase must be thought as an assembly of small clusters. The results show an unexpected dependence of the water and hydroxide (OH) diffusivity on the temperature and the water uptake. The distribution of the cluster size bonded to OH explain partially the OH diffusivity. “Hopping” and “caging” motions are observed with the self-part of the Van Hove functions even at high temperature. The characteristic time of the survival probability correlation function around the functional groups is a decreasing function of the alkyl length.
Pierre Magnico. Molecular dynamics study on water and hydroxide transfer mechanisms in PSU-g-alkyl-TMA membranes at low hydration: Effect of side chain length. International Journal of Hydrogen Energy, Elsevier, 2021, 46 (68), pp.33915-33933. ⟨10.1016/j.ijhydene.2021.07.081⟩. ⟨hal-03358207⟩
S. Baschetti, H. Bufferand, G. Ciraolo, Ph Ghendrih, E. Serre, et al.. Self-consistent cross-field transport model for core and edge plasma transport. Nuclear Fusion, IOP Publishing, 2021, 61 (10), pp.106020. ⟨10.1088/1741-4326/ac1e60⟩. ⟨hal-03380310⟩ Plus de détails...
A two-equation model to self-consistently determine cross-field fluxes in the edge and scrape-off layer region of diverted plasma is used to complete 2D mean-field edge transport description of plasma wall interaction. Inspired by the Reynolds Average Navier-Stokes simulations for neutral fluids, this model is based on the local evolution of the turbulent kinetic energy κ and its dissipation rate ε. These two equations are algebraically derived for RANS modeling and are very slightly modified and adapted to describe self-consistent plasma turbulent transport. The general features of the model are discussed and bridged to the well-known predatorprey and quasilinear models commonly used to investigate plasma transport. Specific closures are proposed based on the interchange turbulence. Results of the 1D model are confronted to experimental evidence by analyzing the computed SOL width and comparing the results to the existing scaling law for L-mode plasmas. Introducing a dependence on the shear of large scale flows, typically the zonal flows, 1D simulations can exhibit an H-mode like transition when increasing the input power, generating an increased stored energy thanks to an interface barrier located at the separatrix. Further 2D plasma-wall interaction simulations for WEST are analyzed that show a good match with the experimental profiles, as well as a ballooned transport driving turbulent transport in the divertor SOL and nearly no transport in the private flux region. The SOL width of WEST is also recovered. These results show the remarkable capability of the κ-ε model to capture key aspects of the physics of turbulent transport throughout the plasma knowing that a unique scalar free parameter is available to tune cross field transport in the whole 2D cross section of the plasma.
S. Baschetti, H. Bufferand, G. Ciraolo, Ph Ghendrih, E. Serre, et al.. Self-consistent cross-field transport model for core and edge plasma transport. Nuclear Fusion, IOP Publishing, 2021, 61 (10), pp.106020. ⟨10.1088/1741-4326/ac1e60⟩. ⟨hal-03380310⟩
S. Di Genova, A. Gallo, N. Fedorczak, H. Yang, G. Ciraolo, et al.. Modelling of tungsten contamination and screening in WEST plasma discharges. Nuclear Fusion, IOP Publishing, 2021, 61 (10), pp.106019. ⟨10.1088/1741-4326/ac2026⟩. ⟨hal-03380329⟩ Plus de détails...
The WEST experiment is currently operating with tungsten plasma-facing components and testing ITER-like divertor monoblocks. In order to support WEST experiments interpretation, numerical analyses were carried out. Starting from WEST experimental data, realistic background plasma conditions were reproduced through SolEdge-EIRENE and used as input for ERO2.0 simulations to investigate tungsten migration. Tungsten contamination due to the different plasma-facing components was modelled under different plasma conditions, highlighting a non-negligible contribution of tungsten coming from the tokamak main chamber. Tungsten penetration factor was computed and used as an indication for tungsten screening by the background plasma at the different tokamak plasma-facing components. Simulations showed the main chamber components to be very weakly screened. Light impurities charge was showed to influence not only tungsten sputtering, but also its probability to enter the confined plasma. Simulations results indicated that even when the tungsten source is not heavily influenced by self-sputtering, contamination of the confined plasma can be strongly impacted by it in low density background plasma conditions. Finally, a one-to-one comparison between tungsten visible spectroscopy at the lower divertor from experimental data and from synthetic diagnostics was performed, showing that it is possible to reproduce a realistic lower divertor signal following experimental evidence on light impurities asymmetry between the targets.
S. Di Genova, A. Gallo, N. Fedorczak, H. Yang, G. Ciraolo, et al.. Modelling of tungsten contamination and screening in WEST plasma discharges. Nuclear Fusion, IOP Publishing, 2021, 61 (10), pp.106019. ⟨10.1088/1741-4326/ac2026⟩. ⟨hal-03380329⟩
Johan Degrigny, Shang-Gui Cai, Jean-François Boussuge, Pierre Sagaut. Improved wall model treatment for aerodynamic flows in LBM. Computers and Fluids, Elsevier, 2021, 227, pp.105041. ⟨10.1016/j.compfluid.2021.105041⟩. ⟨hal-03326170⟩ Plus de détails...
The article deals with an improved treatment of wall models for the simulation of turbulent flows in the framework of Immersed Wall Boundaries on Cartesian grids. The emphasis is put on the implementa-tion in a Lattice-Boltzmann Method solver without loss of generality, since the proposed approach can be used in Navier-Stokes-based solvers in a straightforward way. The proposed improved wall model im-plementation relies on the combination of several key elements, namely i) the removal of grid points too close to the solid surface and ii) an original computation of wall normal velocity gradient and iii) the interpolation scheme. The new method is successfully assessed considering URANS simulations focusing on steady solutions of the Zero Pressure Gradient turbulent flat plate boundary layer and the turbulent flow around a NACA0012 airfoil at several angles of attack.
Johan Degrigny, Shang-Gui Cai, Jean-François Boussuge, Pierre Sagaut. Improved wall model treatment for aerodynamic flows in LBM. Computers and Fluids, Elsevier, 2021, 227, pp.105041. ⟨10.1016/j.compfluid.2021.105041⟩. ⟨hal-03326170⟩
M Raghunathan, Y Marandet, H Bufferand, G Ciraolo, Ph Ghendrih, et al.. Generalized Collisional Fluid Theory for Multi-Component, Multi-Temperature Plasma Using The Linearized Boltzmann Collision Operator for Scrape-Off Layer/Edge Applications. Plasma Physics and Controlled Fusion, IOP Publishing, 2021, 63 (6), pp.064005. ⟨10.1088/1361-6587/abf670⟩. ⟨hal-03384547⟩ Plus de détails...
M Raghunathan, Y Marandet, H Bufferand, G Ciraolo, Ph Ghendrih, et al.. Generalized Collisional Fluid Theory for Multi-Component, Multi-Temperature Plasma Using The Linearized Boltzmann Collision Operator for Scrape-Off Layer/Edge Applications. Plasma Physics and Controlled Fusion, IOP Publishing, 2021, 63 (6), pp.064005. ⟨10.1088/1361-6587/abf670⟩. ⟨hal-03384547⟩
H. Yoo, M. Bahlali, Julien Favier, Pierre Sagaut. A hybrid recursive regularized lattice Boltzmann model with overset grids for rotating geometries. Physics of Fluids, American Institute of Physics, 2021, 33 (5), pp.057113. ⟨10.1063/5.0045524⟩. ⟨hal-03326134⟩ Plus de détails...
Simulating rotating geometries in fluid flows for industrial applications remains a challenging task for general fluid solvers and in particular for the lattice Boltzmann method (LBM) due to inherent stability and accuracy problems. This work proposes an original method based on the widely used overset grids (or Chimera grids) while being integrated with a recent and optimized LBM collision operator, the hybrid recursive regularized model (HRR). The overset grids are used to actualize the rotating geometries where both the rotating and fixed meshes exist simultaneously. In the rotating mesh, the fictitious forces generated from its non-inertial rotating reference frame are taken into account by using a second order discrete forcing term. The fixed and rotating grids communicate with each other through the interpolation of the macroscopic variables. Meanwhile, the HRR collision model is selected to enhance the stability and accuracy properties of the LBM simulations by filtering out redundant higher order non-equilibrium tensors. The robustness of the overset HRR algorithm is assessed on different configurations, undergoing mid-to-high Reynolds number flows, and the method successfully demonstrates its robustness while exhibiting the second order accuracy.
H. Yoo, M. Bahlali, Julien Favier, Pierre Sagaut. A hybrid recursive regularized lattice Boltzmann model with overset grids for rotating geometries. Physics of Fluids, American Institute of Physics, 2021, 33 (5), pp.057113. ⟨10.1063/5.0045524⟩. ⟨hal-03326134⟩
M. Bahlali, H. Yoo, Julien Favier, Pierre Sagaut. A lattice Boltzmann direct coupling overset approach for the moving boundary problem. Physics of Fluids, American Institute of Physics, 2021, 33 (5), pp.053607. ⟨10.1063/5.0044994⟩. ⟨hal-03326151⟩ Plus de détails...
We propose a new direct coupling scheme based on the overset technique to tackle moving boundary problems within the lattice Boltzmann framework. The scheme is based on the interpolation of distribution functions rather than moments, that is, macroscopic variables, and includes an additional hypothesis ensuring mass and momentum conservation at the interface nodes between fixed and moving grids. The method is assessed considering four test cases and considering both the vortical and the acoustic fields. It is shown that the direct coupling method results are in very good agreement with reference results on a configuration without any moving subdomain. Moreover, it is demonstrated that the direct coupling method provides an improvement of the accuracy of the lattice Boltzmann overset algorithm for aeroacoustics. In particular, a convected vortex test case is studied and reveals that the direct coupling approach leads to a better ability to conserve the vortex structure over time, as well as a reduction in spurious acoustic distorsions at the fixed/moving interface.
M. Bahlali, H. Yoo, Julien Favier, Pierre Sagaut. A lattice Boltzmann direct coupling overset approach for the moving boundary problem. Physics of Fluids, American Institute of Physics, 2021, 33 (5), pp.053607. ⟨10.1063/5.0044994⟩. ⟨hal-03326151⟩
Jérémie Janin, Fabien Duval, Christophe Friess, Pierre Sagaut. A new linear forcing method for isotropic turbulence with controlled integral length scale. Physics of Fluids, American Institute of Physics, 2021, 33 (4), pp.045127. ⟨10.1063/5.0045818⟩. ⟨hal-03326165⟩ Plus de détails...
Turbulence is a common feature to all flows that surround us. Despite its ubiquity, particularly in industrial flows, it is very difficult to provide a mathematical framework to the generation of turbulent eddies. Several techniques have been proposed which are able to reproduce the main features of turbulent flows, such as realistic pressure and velocity fluctuations, exhibiting proper space- and time-correlations. These techniques are usually first evaluated upon sustained homogeneous isotropic turbulence by introducing body forces to the Navier-Stokes equations. Among these techniques, Lundgren suggested a successful forcing, applied in physical space. The latter approach unfortunately lacks predicting the integral length scale of turbulence. The present study provides a forcing method based on a reconstruction approach which consists in building fluctuations with a turbulent synthetic velocity field based on a prescribed energy spectrum model. The proposed approach is assessed by performing large-eddy simulations of a sustained homogeneous isotropic turbulence in a triply periodic box of size L = 2pi. Properties of the new forcing technique are discussed, drawing on both spatial and time correlations and also on the shape of energy spectrum together with the level of resolved turbulent kinetic energy. A special attention is put on the control of resolved turbulent energy. In this framework, an efficient selective forcing technique is derived, making use of spectral space features. The results show that the proposed approach allows to drive efficiently the resolved kinetic energy towards its target value while preserving the integral length scale independent of the domain size. It is observed that the resulting longitudinal length scale is overestimated by 13%, while the two-time correlations are recovered when using stochastic frequencies.
Jérémie Janin, Fabien Duval, Christophe Friess, Pierre Sagaut. A new linear forcing method for isotropic turbulence with controlled integral length scale. Physics of Fluids, American Institute of Physics, 2021, 33 (4), pp.045127. ⟨10.1063/5.0045818⟩. ⟨hal-03326165⟩
Florian Renard, Yongliang Feng, Jean-François Boussuge, Pierre Sagaut. Improved compressible hybrid lattice Boltzmann method on standard lattice for subsonic and supersonic flows. Computers and Fluids, Elsevier, 2021, 219, pp.104867. ⟨10.1016/j.compfluid.2021.104867⟩. ⟨hal-03326159⟩ Plus de détails...
A D2Q9 Hybrid Lattice Boltzmann Method (HLBM) is proposed for the simulation of both compressible subsonic and supersonic flows. This HLBM is an extension of the model of Feng et al. [1], which has been found, via different test cases, to be unstable for supersonic regimes. To circumvent this limitation, we propose:: (1) a new discretization of the lattice closure correction term that makes possible the simulation of supersonic flows, (2) a corrected viscous stress tensor that takes into account polyatomic gases, and (3) a novel discretization of the viscous heat production term fitting with the regularized formalism. The result is a hybrid method that resolves the mass and momentum equations with an LBM algorithm, and resolves the entropy-based energy equation with a finite volume method. This approach fully recovers the physics of the Navier-Stokes-Fourier equations with the ideal gas equation of state, and is valid from subsonic to supersonic regimes. It is then successfully assessed with both smooth flows and flows involving shocks. The proposed model is shown to be an efficient, accurate, and robust alternative to classic Navier-Stokes methods for the simulation of compressible flows.
Florian Renard, Yongliang Feng, Jean-François Boussuge, Pierre Sagaut. Improved compressible hybrid lattice Boltzmann method on standard lattice for subsonic and supersonic flows. Computers and Fluids, Elsevier, 2021, 219, pp.104867. ⟨10.1016/j.compfluid.2021.104867⟩. ⟨hal-03326159⟩
E. Laribi, E. Serre, P. Tamain, H. Yang. Impact of negative triangularity on edge plasma transport and turbulence in TOKAM3X simulations. Nuclear Materials and Energy, Elsevier, 2021, pp.101012. ⟨10.1016/j.nme.2021.101012⟩. ⟨hal-03214958⟩ Plus de détails...
The impact of triangularity on edge plasma transport and turbulence is addressed from full 3D turbulence simulations performed with TOKAM3X. Flux driven fluid simulations are run on analytical magnetic equilibria generated with positive and negative triangularity δ in a bottom limiter configuration. The conservation of the energy is assured by the increase of the bottom limiter radial position from δ > 0 to δ < 0. Changing the triangularity impacts both the plasma equilibrium and the turbulence. In particular, negative triangularity leads to a reduction of the density and electron temperature decay lengths in agreement with the literature. Concerning the turbulence, in all the simulations, it remains ballooned with an enhanced level of fluctuations at low field side in comparison to the high field one. Moreover, no clear trend is visible on the relative level of fluctuations of both density and electron temperature in the CFR whereas an enhancement (resp. reduction) is visible in the scrape-off layer at the low field side midplane for the negative (resp. positive) triangularity simulations. This behaviour differs from TCV and DIII-D measurements which show the benefit of negative triangularity in terms of turbulence reduction and increased confinement. However, no conclusion is drawn from our preliminary study concerning the impact of triangularity on the turbulent transport. Change in triangularity impacts many simulation control parameters, as in the experiments, and that the analysis of its impact alone on the dynamics of the plasma is not obvious in this configuration.
E. Laribi, E. Serre, P. Tamain, H. Yang. Impact of negative triangularity on edge plasma transport and turbulence in TOKAM3X simulations. Nuclear Materials and Energy, Elsevier, 2021, pp.101012. ⟨10.1016/j.nme.2021.101012⟩. ⟨hal-03214958⟩
Jérémie Janin, Fabien Duval, Christophe Friess, Pierre Sagaut. A new linear forcing method for isotropic turbulence with controlled integral length scale. Physics of Fluids, American Institute of Physics, 2021, 33 (4), pp.045127. ⟨10.1063/5.0045818⟩. ⟨hal-03326165⟩ Plus de détails...
Turbulence is a common feature to all flows that surround us. Despite its ubiquity, particularly in industrial flows, it is very difficult to provide a mathematical framework for the generation of turbulent eddies. Several methods have been proposed which are able to reproduce realistic features for velocity fluctuations, exhibiting proper space- and time-correlations. Focusing on physical space forcing, these methods are usually first evaluated upon sustained homogeneous isotropic turbulence by introducing a body force to the Navier-Stokes equations. Since the pioneering work of Lundgren, these techniques usually experience difficulties in predicting the integral length scale. The present study provides a forcing through a reconstruction approach which consists in building velocity fluctuations with a prescribed energy spectrum model. The proposed approach is assessed by performing large-eddy simulations of a sustained homogeneous isotropic turbulence in a triply periodic box. Properties of this forcing technique are discussed, drawing on both spatial and time correlations and also on the shape of energy spectrum together with the level of resolved turbulent kinetic energy. A special attention is put on the control of resolved turbulent energy. In this framework, an efficient selective forcing technique is derived, making use of spectral space features. The results show that the proposed approach allows to drive efficiently the resolved kinetic energy toward its target value while preserving the integral length scale independent of the domain size. It is observed that the resulting longitudinal length scale is overestimated by 13%, while the two-time correlations are recovered when using stochastic frequencies.
Jérémie Janin, Fabien Duval, Christophe Friess, Pierre Sagaut. A new linear forcing method for isotropic turbulence with controlled integral length scale. Physics of Fluids, American Institute of Physics, 2021, 33 (4), pp.045127. ⟨10.1063/5.0045818⟩. ⟨hal-03326165⟩
E. Laribi, E. Serre, P. Tamain, H. Yang. Impact of negative triangularity on edge plasma transport and turbulence in TOKAM3X simulations. Nuclear Materials and Energy, Elsevier, 2021, pp.101012. ⟨10.1016/j.nme.2021.101012⟩. ⟨hal-03214958⟩ Plus de détails...
The impact of triangularity on edge plasma transport and turbulence is addressed from full 3D turbulence simulations performed with TOKAM3X. Flux driven fluid simulations are run on analytical magnetic equilibria generated with positive and negative triangularity δ in a bottom limiter configuration. The conservation of the energy is assured by the increase of the bottom limiter radial position from δ > 0 to δ < 0. Changing the triangularity impacts both the plasma equilibrium and the turbulence. In particular, negative triangularity leads to a reduction of the density and electron temperature decay lengths in agreement with the literature. Concerning the turbulence, in all the simulations, it remains ballooned with an enhanced level of fluctuations at low field side in comparison to the high field one. Moreover, no clear trend is visible on the relative level of fluctuations of both density and electron temperature in the CFR whereas an enhancement (resp. reduction) is visible in the scrape-off layer at the low field side midplane for the negative (resp. positive) triangularity simulations. This behaviour differs from TCV and DIII-D measurements which show the benefit of negative triangularity in terms of turbulence reduction and increased confinement. However, no conclusion is drawn from our preliminary study concerning the impact of triangularity on the turbulent transport. Change in triangularity impacts many simulation control parameters, as in the experiments, and that the analysis of its impact alone on the dynamics of the plasma is not obvious in this configuration.
E. Laribi, E. Serre, P. Tamain, H. Yang. Impact of negative triangularity on edge plasma transport and turbulence in TOKAM3X simulations. Nuclear Materials and Energy, Elsevier, 2021, pp.101012. ⟨10.1016/j.nme.2021.101012⟩. ⟨hal-03214958⟩
S. Guo, Y. Feng, Pierre Sagaut. On the use of conservative formulation of energy equation in hybrid compressible lattice Boltzmann method. Computers and Fluids, Elsevier, 2021, 219, pp.104866. ⟨10.1016/j.compfluid.2021.104866⟩. ⟨hal-03326128⟩ Plus de détails...
Effect of density variations on mass conservation properties is widely recognized in the lattice Boltzmann method (LBM), thus non-conservative form of scalar transport equation was commonly adopted within the framework of hybrid LBM. Focusing on the compressible hybrid LBM, mass conservation and its effect on energy conservation equation are studied in this paper. Starting from the analysis on mass conservation law recovered by LBM, the consistency between conservative and non-conservative formulations of energy conservation equation based on various thermodynamic variables and lattice Boltzmann equation is addressed. Driven by the theoretical analysis, a set of modified consistent energy equations in entropy and internal energy form is derived to reduce the error terms and improve the consistency. The theoretical analysis and modified energy equations are intensively evaluated by several numerical test cases, e.g., the isentropic vortex convection, three-dimensional compressible Taylor-Green vortex and shock-vortex interaction.
S. Guo, Y. Feng, Pierre Sagaut. On the use of conservative formulation of energy equation in hybrid compressible lattice Boltzmann method. Computers and Fluids, Elsevier, 2021, 219, pp.104866. ⟨10.1016/j.compfluid.2021.104866⟩. ⟨hal-03326128⟩
Yongliang Feng, Johann Miranda‐fuentes, Shaolong Guo, Jérôme Jacob, Pierre Sagaut. ProLB: A Lattice Boltzmann Solver of Large‐Eddy Simulation for Atmospheric Boundary Layer Flows. Journal of Advances in Modeling Earth Systems, American Geophysical Union, 2021, 13 (3), pp.e2020MS002107. ⟨10.1029/2020MS002107⟩. ⟨hal-03326123⟩ Plus de détails...
A large-eddy simulation tool is developed for simulating the dynamics of atmospheric boundary layers (ABLs) using lattice Boltzmann method (LBM), which is an alternative approach for computational fluid dynamics and proved to be very well suited for the simulation of low-Mach flows. The equations of motion are coupled with the global complex physical models considering the coupling among several mechanisms, namely basic hydro-thermodynamics and body forces related to stratification, Coriolis force, canopy effects, humidity transport, and condensation. Mass and momentum equations are recovered by an efficient streaming, collision, and forcing process within the framework of LBM while the governing equations of temperature, liquid, and vapor water fraction are solved using a finite volume method. The implementation of wall models for ABL, subgrid models, and interaction terms related to multiphysic phenomena (e.g., stratification, condensation) is described, implemented, and assessed in this study. An immersed boundary approach is used to handle flows in complex configurations, with application to flows in realistic urban areas. Applications to both wind engineering and atmospheric pollutant dispersion are illustrated.
Yongliang Feng, Johann Miranda‐fuentes, Shaolong Guo, Jérôme Jacob, Pierre Sagaut. ProLB: A Lattice Boltzmann Solver of Large‐Eddy Simulation for Atmospheric Boundary Layer Flows. Journal of Advances in Modeling Earth Systems, American Geophysical Union, 2021, 13 (3), pp.e2020MS002107. ⟨10.1029/2020MS002107⟩. ⟨hal-03326123⟩
Journal: Journal of Advances in Modeling Earth Systems
Y. Feng, J. Miranda-Fuentes, Jérôme Jacob, Pierre Sagaut. Hybrid lattice Boltzmann model for atmospheric flows under anelastic approximation. Physics of Fluids, American Institute of Physics, 2021, 33 (3), pp.036607. ⟨10.1063/5.0039516⟩. ⟨hal-03326143⟩ Plus de détails...
Lattice Boltzmann (LB) method for atmospheric dynamics is developed by considering the characteristics of the anelastic approximation. After introducing reference base state values in atmospheric flows, an LB model, with an external force term, has been constructed in anelastic framework. In the proposed anelastic LB model, mass and momentum conservation equations are solved by the LB method with a regularization procedure, and temperature field or scalar transport is simulated by finite volume method. The derived macroscopic governing equations from the anelastic model are analyzed and discussed in Chapman-Enskog asymptotic expansion. The anelastic LB model is assessed considering three benchmarks including a non-hydrostatic atmospheric inviscid convection, two-dimensional density currents, and inertia-gravity waves in stably stratified atmospheric layer. The validations demonstrate that the anelastic extension of the LB method can simulate atmospheric flows effectively and accurately. Besides, the proposed model offers a unified framework for both Boussinesq approximation and anelastic approximation, which is largely free of characteristic depth of atmospheric flows.
Y. Feng, J. Miranda-Fuentes, Jérôme Jacob, Pierre Sagaut. Hybrid lattice Boltzmann model for atmospheric flows under anelastic approximation. Physics of Fluids, American Institute of Physics, 2021, 33 (3), pp.036607. ⟨10.1063/5.0039516⟩. ⟨hal-03326143⟩
Shang-Gui Cai, Johan Degrigny, Jean-François Boussuge, Pierre Sagaut. Coupling of turbulence wall models and immersed boundaries on Cartesian grids. Journal of Computational Physics, Elsevier, 2021, 429, pp.109995. ⟨10.1016/j.jcp.2020.109995⟩. ⟨hal-03326140⟩ Plus de détails...
An improved coupling of immersed boundary method and turbulence wall models on Cartesian grids is proposed, for producing smooth wall surface pressure and skin friction at high Reynolds numbers. Spurious oscillations are frequently observed on these quantities with most immersed boundary wall modeling methods, especially for the skin friction which is found to be very sensitive to the solid surface's position and orientation against the Cartesian grids. The problem originates from the irregularity of the wall distance on the stair-step grid boundaries where the immersed boundary conditions are applied. To reduce this directional error, several modifications are presented to enhance the near wall solution. First, the commonly used interpolation for the flow velocity is replaced by one for the friction velocity, which has much less variation near wall. The concept of using a fictitious point to retrieve flow fields in the wall normal direction is abandoned and the interpolation is performed in the wall parallel plane with existing fluid points. Secondly, the velocity gradients at the approximated boundary are computed with advanced schemes and the normal gradient of the tangential velocity is reconstructed from the wall laws. To further protect the near wall solution, the normal velocity gradient and the working viscosity from the Spalart-Allmaras turbulence model are enforced by their theoretical solutions in the interior fluid close to the wall. Additionally, various post-processing algorithms for reconstructing wall surface quantities and force integrations are investigated. Other related factors are also discussed for their effects on the results. The validity of present method has been demonstrated through numerical benchmark tests on a flat plate at zero pressure gradient, both aligned and inclined with respect to the grid, as well as aerodynamic cases of NACA 23012 airfoil and NASA trap wing.
Shang-Gui Cai, Johan Degrigny, Jean-François Boussuge, Pierre Sagaut. Coupling of turbulence wall models and immersed boundaries on Cartesian grids. Journal of Computational Physics, Elsevier, 2021, 429, pp.109995. ⟨10.1016/j.jcp.2020.109995⟩. ⟨hal-03326140⟩
Isabelle Cheylan, Song Zhao, Pierre Boivin, Pierre Sagaut. Compressible pressure-based Lattice-Boltzmann applied to humid air with phase change. Applied Thermal Engineering, Elsevier, 2021, pp.116868. ⟨10.1016/j.applthermaleng.2021.116868⟩. ⟨hal-03180596⟩ Plus de détails...
A new compressible pressure-based Lattice Boltzmann Method is proposed to simulate humid air flows with phase change. The variable density and compressible effects are fully resolved, effectively lifting the Boussinesq approximation commonly used, e.g. for meteorological flows. Previous studies indicate that the Boussinesq assumption can lead to errors up to 25%, but the model remains common, for compressible models often suffer from a lack of stability. In order to overcome this issue, a new pressure-based solver is proposed, exhibiting excellent stability properties. Mass and momentum conservation equations are solved by a hybrid recursive regularized Lattice-Boltzmann approach, whereas the enthalpy and species conservation equations are solved using a finite volume method. The solver is based on a pressure-based method coupled with a predictor-corrector algorithm, and incorporates a humid equation of state, as well as a specific boundary condition treatment for phase change. In particular, boundary conditions that handle mass leakage are also proposed and validated. Three test cases are investigated in order to validate this new approach: the Rayleigh-Bénard instability applied to humid air, the atmospheric rising of a condensing moist bubble, and finally the evaporation of a thin liquid film in a vertical channel. Results indicate that the proposed pressure-based Lattice-Boltzmann model is stable and accurate on all cases.
Isabelle Cheylan, Song Zhao, Pierre Boivin, Pierre Sagaut. Compressible pressure-based Lattice-Boltzmann applied to humid air with phase change. Applied Thermal Engineering, Elsevier, 2021, pp.116868. ⟨10.1016/j.applthermaleng.2021.116868⟩. ⟨hal-03180596⟩
Simon Gsell, Umberto d'Ortona, Julien Favier. Lattice-Boltzmann simulation of creeping generalized Newtonian flows: theory and guidelines. Journal of Computational Physics, Elsevier, 2021, 429, pp.109943. ⟨10.1016/j.jcp.2020.109943⟩. ⟨hal-03166492⟩ Plus de détails...
The accuracy of the lattice-Boltzmann (LB) method is related to the relaxation time controlling the flow viscosity. In particular, it is often recommended to avoid large fluid viscosities in order to satisfy the low-Knudsen-number assumption that is essential to recover hydrodynamic behavior at the macroscopic scale, which may in principle limit the possibility of simulating creeping flows and non-Newtonian flows involving important viscosity variations. Here it is shown, based on the continuous Boltzmann equations, that a two-relaxation-time (TRT) model can however recover the steady Navier-Stokes equations without any restriction on the fluid viscosity, provided that the Knudsen number is redefined as a function of both relaxation times. This effective Knudsen number is closely related to the previously-described parameter controlling numerical errors of the TRT model, providing a consistent theory at both the discrete and continuous levels. To simulate incompressible flows, the viscous incompressibility condition M a 2 /Re 1 also needs to be satisfied, where M a and Re are the Mach and Reynolds numbers. This concept is extended by defining a local incompressibility factor, allowing one to locally control the accuracy of the simulation for flows involving varying viscosities. These theoretical arguments are illustrated based on numerical simulations of the two-dimensional flow past a square cylinder. In the case of a Newtonian flow, the viscosity independence is confirmed for relaxation times up to 10 4 , and the ratio M a 2 /Re = 0.1 is small enough to ensure reliable incompressible simulations. The Herschel-Bulkley model is employed to introduce shear-dependent viscosities in the flow. The proposed numerical strategy allows to achieve major viscosity variations, avoiding the implementation of artificial viscosity cutoff in high-viscosity regions. Highly non-linear flows are simulated over ranges of the Bingham number Bn ∈ [1, 1000] and flow index n ∈ [0.2, 1.8], and successfully compared to prior numerical works based on Navier-Stokes solvers. This work provides a general framework to simulate complex creeping flows, as encountered in many biological and industrial systems, using the lattice-Boltzmann method.
Simon Gsell, Umberto d'Ortona, Julien Favier. Lattice-Boltzmann simulation of creeping generalized Newtonian flows: theory and guidelines. Journal of Computational Physics, Elsevier, 2021, 429, pp.109943. ⟨10.1016/j.jcp.2020.109943⟩. ⟨hal-03166492⟩
Jérôme Jacob, Lucie Merlier, Felix Marlow, Pierre Sagaut. Lattice Boltzmann Method-Based Simulations of Pollutant Dispersion and Urban Physics. Atmosphere, MDPI 2021, 12 (7), pp.833. ⟨10.3390/atmos12070833⟩. ⟨hal-03326148⟩ Plus de détails...
Mesocale atmospheric flows that develop in the boundary layer or microscale flows that develop in urban areas are challenging to predict, especially due to multiscale interactions, multiphysical couplings, land and urban surface thermal and geometrical properties and turbulence. However, these different flows can indirectly and directly affect the exposure of people to deteriorated air quality or thermal environment, as well as the structural and energy loads of buildings. Therefore, the ability to accurately predict the different interacting physical processes determining these flows is of primary importance. To this end, alternative approaches based on the lattice Boltzmann method (LBM) wall model large eddy simulations (WMLESs) appear particularly interesting as they provide a suitable framework to develop efficient numerical methods for the prediction of complex large or smaller scale atmospheric flows. In particular, this article summarizes recent developments and studies performed using the hybrid recursive regularized collision model for the simulation of complex or/and coupled turbulent flows. Different applications to the prediction of meteorological humid flows, urban pollutant dispersion, pedestrian wind comfort and pressure distribution on urban buildings including uncertainty quantification are especially reviewed. For these different applications, the accuracy of the developed approach was assessed by comparison with experimental and/or numerical reference data, showing a state of the art performance. Ongoing developments focus now on the validation and prediction of indoor environmental conditions including thermal mixing and pollutant dispersion in different types of rooms equipped with heat, ventilation and air conditioning systems.
Jérôme Jacob, Lucie Merlier, Felix Marlow, Pierre Sagaut. Lattice Boltzmann Method-Based Simulations of Pollutant Dispersion and Urban Physics. Atmosphere, MDPI 2021, 12 (7), pp.833. ⟨10.3390/atmos12070833⟩. ⟨hal-03326148⟩
G. Farag, T. Coratger, G. Wissocq, S. Zhao, Pierre Boivin, et al.. A unified hybrid lattice-Boltzmann method for compressible flows: Bridging between pressure-based and density-based methods. Physics of Fluids, American Institute of Physics, 2021, 33 (8), pp.086101. ⟨10.1063/5.0057407⟩. ⟨hal-03324229⟩ Plus de détails...
A unified expression for high-speed compressible segregated consistent lattice Boltzmann methods, namely, pressure-based and improved density-based methods, is given. It is theoretically proved that in the absence of forcing terms, these approaches are strictly identical and can be recast in a unique form. An important result is that the difference with classical density-based methods lies in the addition of fourth-order term in the equilibrium function. It is also shown that forcing terms used to balance numerical errors in both original pressure-based and improved density-based methods can be written in a generalized way. A hybrid segregated efficient lattice-Boltzmann for compressible flow based on this unified model, equipped with a recursive regularization kernel, is proposed and successfully assessed on a wide set of test cases with and without shock waves.
G. Farag, T. Coratger, G. Wissocq, S. Zhao, Pierre Boivin, et al.. A unified hybrid lattice-Boltzmann method for compressible flows: Bridging between pressure-based and density-based methods. Physics of Fluids, American Institute of Physics, 2021, 33 (8), pp.086101. ⟨10.1063/5.0057407⟩. ⟨hal-03324229⟩
B Dudson, W Gracias, R Jorge, A Nielsen, J Olsen, et al.. Edge turbulence in ISTTOK: a multi-code fluid validation. Plasma Physics and Controlled Fusion, IOP Publishing, 2021. ⟨hal-03179634⟩ Plus de détails...
B Dudson, W Gracias, R Jorge, A Nielsen, J Olsen, et al.. Edge turbulence in ISTTOK: a multi-code fluid validation. Plasma Physics and Controlled Fusion, IOP Publishing, 2021. ⟨hal-03179634⟩
Raffaele Tatali, Eric Serre, Patrick Tamain, Davide Galassi, Philippe Ghendrih, et al.. Impact of collisionality on turbulence in the edge of tokamak plasma using 3D global simulations. Nuclear Fusion, IOP Publishing, 2021, ⟨10.1088/1741-4326/abe98b⟩. ⟨hal-03182318⟩ Plus de détails...
Collisionality is one of the key parameters in determining turbulent transport in the plasma edge, regulating phenomena such as "shoulder formation", separation of scale lengths in the scrape-off layer, turbulence damping and zonal flow dynamics. Understanding its role is therefore of primary importance for future reactors like ITER. Obtaining reliable predictions and a better characterization of plasma flow properties when varying collisionality remains, however, a critical challenge for the simulations. This paper focuses on the impact of varying collisionality in a nonisothermal three-dimensional fluid model of the plasma edge. A high field side limited configuration encompassing open and closed magnetic field lines with parameters typical of a medium-sized tokamak is considered. The present model can consistently account for the variations of collisionality and its impact on both the parallel resistivity η and the ion and electron parallel thermal conductivities χ e,i. Details on mean flow and turbulence properties are given. Changing collisionality leads to significant changes in the flow properties both on the mean and fluctuating quantities. In particular, lowering collisionality decreases the size of coherent structures, the fluctuation levels of turbulence, and steepens the density and temperature equilibrium profiles around the separatrix leading to a global reduction of the turbulent transport. The scrape-off layer (SOL) width is observed to increase with collisionality, eventually resulting in the disappearance of the scale lengths separation between near and far SOL, consistently with previous experimental observations. At low collisionality, where the presence of narrow feature is well-established, a contribution of heat conduction increases up to compete with heat convection.
Raffaele Tatali, Eric Serre, Patrick Tamain, Davide Galassi, Philippe Ghendrih, et al.. Impact of collisionality on turbulence in the edge of tokamak plasma using 3D global simulations. Nuclear Fusion, IOP Publishing, 2021, ⟨10.1088/1741-4326/abe98b⟩. ⟨hal-03182318⟩
Jérôme Jacob, Lucie Merlier, Felix Marlow, Pierre Sagaut. Lattice Boltzmann Method-Based Simulations of Pollutant Dispersion and Urban Physics. Atmosphere, MDPI 2021, 12 (7), pp.833. ⟨10.3390/atmos12070833⟩. ⟨hal-03326148⟩ Plus de détails...
Mesocale atmospheric flows that develop in the boundary layer or microscale flows that develop in urban areas are challenging to predict, especially due to multiscale interactions, multiphysical couplings, land and urban surface thermal and geometrical properties and turbulence. However, these different flows can indirectly and directly affect the exposure of people to deteriorated air quality or thermal environment, as well as the structural and energy loads of buildings. Therefore, the ability to accurately predict the different interacting physical processes determining these flows is of primary importance. To this end, alternative approaches based on the lattice Boltzmann method (LBM) wall model large eddy simulations (WMLESs) appear particularly interesting as they provide a suitable framework to develop efficient numerical methods for the prediction of complex large or smaller scale atmospheric flows. In particular, this article summarizes recent developments and studies performed using the hybrid recursive regularized collision model for the simulation of complex or/and coupled turbulent flows. Different applications to the prediction of meteorological humid flows, urban pollutant dispersion, pedestrian wind comfort and pressure distribution on urban buildings including uncertainty quantification are especially reviewed. For these different applications, the accuracy of the developed approach was assessed by comparison with experimental and/or numerical reference data, showing a state of the art performance. Ongoing developments focus now on the validation and prediction of indoor environmental conditions including thermal mixing and pollutant dispersion in different types of rooms equipped with heat, ventilation and air conditioning systems.
Jérôme Jacob, Lucie Merlier, Felix Marlow, Pierre Sagaut. Lattice Boltzmann Method-Based Simulations of Pollutant Dispersion and Urban Physics. Atmosphere, MDPI 2021, 12 (7), pp.833. ⟨10.3390/atmos12070833⟩. ⟨hal-03326148⟩
B Luce, P Tamain, G Ciraolo, Ph Ghendrih, G Giorgiani, et al.. Impact of three-dimensional magnetic perturbations on turbulence in tokamak edge plasmas. Plasma Physics and Controlled Fusion, IOP Publishing, 2021, ⟨10.1088/1361-6587/abf03f 2021⟩. ⟨hal-03144400⟩ Plus de détails...
The impact of resonant magnetic perturbations (RMP) on the plasma edge equilibrium and on the turbulence is investigated in a circular limited configuration. The study is based on a Braginski-based isothermal fluid model. The flow response of an unperturbed case to a small amplitude three-dimensional single mode RMP is studied and a scan in amplitude and poloidal and toroidal mode number is performed. Special attention is given when magnetic islands appear in the simulation domain on flux surfaces of rational safety factor. Results show an impact of Magnetic Perturbations (MPs) on both the plasma equilibrium and on the turbulence properties, with a deviation to the reference solution which depends on the MPs amplitude and on their wavenumbers. The impact of MPs on turbulence is however globally weaker than on the plasma equilibrium, suggesting a stabilizing effect of the MP on turbulent transport. Experimental trends are recovered such as the density pump-out and the increase of the radial electric field as well as the reorganization of the parallel velocity. The ballooning of the transport is modified under the effect of the perturbations, with a shift of the peaked poloidal region from the upper to the lower outer midplane. In the present model, the SOL width is observed decreasing in the presence of MPs. Turbulence properties are also impacted with the density fluctuations level decreasing in perturbed solutions and the intermittency is globally weakened.
B Luce, P Tamain, G Ciraolo, Ph Ghendrih, G Giorgiani, et al.. Impact of three-dimensional magnetic perturbations on turbulence in tokamak edge plasmas. Plasma Physics and Controlled Fusion, IOP Publishing, 2021, ⟨10.1088/1361-6587/abf03f 2021⟩. ⟨hal-03144400⟩
S. Zhao, G. Farag, Pierre Boivin, P. Sagaut. Toward fully conservative hybrid lattice Boltzmann methods for compressible flows. Physics of Fluids, American Institute of Physics, 2020, 32 (12), pp.126118. ⟨10.1063/5.0033245⟩. ⟨hal-03087980⟩ Plus de détails...
S. Zhao, G. Farag, Pierre Boivin, P. Sagaut. Toward fully conservative hybrid lattice Boltzmann methods for compressible flows. Physics of Fluids, American Institute of Physics, 2020, 32 (12), pp.126118. ⟨10.1063/5.0033245⟩. ⟨hal-03087980⟩
Christophe Friess, Lars Davidson. A formulation of PANS capable of mimicking IDDES. International Journal of Heat and Fluid Flow, Elsevier, 2020, 86, pp.108666. ⟨10.1016/j.ijheatfluidflow.2020.108666⟩. ⟨hal-02944327⟩ Plus de détails...
Christophe Friess, Lars Davidson. A formulation of PANS capable of mimicking IDDES. International Journal of Heat and Fluid Flow, Elsevier, 2020, 86, pp.108666. ⟨10.1016/j.ijheatfluidflow.2020.108666⟩. ⟨hal-02944327⟩
Journal: International Journal of Heat and Fluid Flow
Tatyana Lyubimova, Anatoly Lepikhin, Yanina Parshakova, Vadim Kolchanov, Carlo Gualtieri, et al.. A Numerical Study of the Influence of Channel-Scale Secondary Circulation on Mixing Processes Downstream of River Junctions. Water, MDPI, 2020, 12 (11), pp.2969. ⟨10.3390/w12112969⟩. ⟨hal-02989736⟩ Plus de détails...
A rapid downstream weakening of the processes that drive the intensity of transverse mixing at the confluence of large rivers has been identified in the literature and attributed to the progressive reduction in channel scale secondary circulation and shear-driven mixing with distance downstream from the junction. These processes are investigated in this paper using a three-dimensional computation of the Reynolds averaged Navier Stokes equations combined with a Reynolds stress turbulence model for the confluence of the Kama and Vishera rivers in the Russian Urals. Simulations were carried out for three different configurations: an idealized planform with a rectangular cross-section (R), the natural planform with a rectangular cross-section (P), and the natural planform with the measured bathymetry (N), each one for three different discharge ratios. Results show that in the idealized configuration (R), the initial vortices that form due to channel-scale pressure gradients decline rapidly with distance downstream. Mixing is slow and incomplete at more than 10 multiples of channel width downstream from the junction corner. However, when the natural planform and bathymetry are introduced (N), rates of mixing increase dramatically at the junction corner and are maintained with distance downstream. Comparison with the P case suggests that it is the bathymetry that drives the most rapid mixing and notably when the discharge ratio is such that a single channel-scale vortex develops aided by curvature in the post junction channel. This effect is strongest when the discharge of the tributary that has the same direction of curvature as the post junction channel is greatest. A comprehensive set of field data are required to test this conclusion. If it holds, theoretical models of mixing processes in rivers will need to take into account the effects of bathymetry upon the interaction between river discharge ratio, secondary circulation development, and mixing rates.
Tatyana Lyubimova, Anatoly Lepikhin, Yanina Parshakova, Vadim Kolchanov, Carlo Gualtieri, et al.. A Numerical Study of the Influence of Channel-Scale Secondary Circulation on Mixing Processes Downstream of River Junctions. Water, MDPI, 2020, 12 (11), pp.2969. ⟨10.3390/w12112969⟩. ⟨hal-02989736⟩
Thomas Astoul, Gauthier Wissocq, Jean-François Boussuge, Alois Sengissen, Pierre Sagaut. Analysis and reduction of spurious noise generated at grid refinement interfaces with the lattice Boltzmann method. Journal of Computational Physics, Elsevier, 2020, 418, pp.109645. ⟨10.1016/j.jcp.2020.109645⟩. ⟨hal-02960150⟩ Plus de détails...
The present study focuses on the unphysical effects induced by the use of non-uniform grids in the lattice Boltzmann method. In particular, the convection of vortical structures across a grid refinement interface is likely to generate spurious noise that may impact the whole computation domain. This issue becomes critical in the case of aeroacoustic simulations, where accurate pressure estimations are of paramount importance. The purpose of this article is to identify the issues occurring at the interface and to propose possible solutions yielding significant improvements for aeroacoustic simulations. More specifically, this study highlights the critical involvement of non-physical modes in the generation of spurious vorticity and acoustics. The identification of these modes is made possible thanks to linear stability analyses performed in the fluid core, and non-hydrodynamic sensors specifically developed to systematically emphasize them during a simulation. Investigations seeking pure acoustic waves and sheared flows allow for isolating the contribution of each mode. An important result is that spurious wave generation is intrinsically due to the change in the grid resolution (i.e. aliasing) independently of the details of the grid transition algorithm. Finally, the solution proposed to minimize spurious wave amplitude consists of choosing an appropriate collision model in the fluid core so as to cancel the non-hydrodynamic mode contribution regardless the grid coupling algorithm. Results are validated on a convected vortex and on a turbulent flow around a cylinder where a huge reduction of both spurious noise and vorticity are obtained.
Thomas Astoul, Gauthier Wissocq, Jean-François Boussuge, Alois Sengissen, Pierre Sagaut. Analysis and reduction of spurious noise generated at grid refinement interfaces with the lattice Boltzmann method. Journal of Computational Physics, Elsevier, 2020, 418, pp.109645. ⟨10.1016/j.jcp.2020.109645⟩. ⟨hal-02960150⟩
S. Guo, Yongliang Feng, Jérôme Jacob, F. Renard, Pierre Sagaut. An efficient lattice Boltzmann method for compressible aerodynamics on D3Q19 lattice. Journal of Computational Physics, Elsevier, 2020, 418, pp.109570. ⟨10.1016/j.jcp.2020.109570⟩. ⟨hal-02960161⟩ Plus de détails...
An efficient lattice Boltzmann (LB) model relying on a hybrid recursive regularization (HRR) collision operator on D3Q19 stencil is proposed for the simulation of three-dimensional high-speed compressible flows in both subsonic and supersonic regimes. An improved thermal equilibrium distribution function on D3Q19 lattice is derived to reduce the complexity of correcting terms. A simple shock capturing scheme and an upwind biased discretization of correction terms are implemented for supersonic flows with shocks. Mass and momentum equations are recovered by an efficient streaming, collision and forcing process on D3Q19 lattice. Then a non-conservative formulation of the entropy evolution equation is used, that is solved using a finite volume method. The proposed method is assessed considering the simulation of i) 2D isentropic vortex convection, ii) 3D non-isothermal acoustic pulse, iii) 2D supersonic flow over a bump, iv) 3D shock explosion in a box, v) 2D vortex interaction with shock wave, vi) 2D laminar flows over a flat plate at Ma of 0.5, 1.0 and 1.5.
S. Guo, Yongliang Feng, Jérôme Jacob, F. Renard, Pierre Sagaut. An efficient lattice Boltzmann method for compressible aerodynamics on D3Q19 lattice. Journal of Computational Physics, Elsevier, 2020, 418, pp.109570. ⟨10.1016/j.jcp.2020.109570⟩. ⟨hal-02960161⟩
M. Meldi, A. Mariotti, M. Salvetti, P. Sagaut. Numerical investigation of skewed spatially evolving mixing layers. Journal of Fluid Mechanics, Cambridge University Press (CUP), 2020, 897, pp.A35. ⟨10.1017/jfm.2020.407⟩. ⟨hal-03251559⟩ Plus de détails...
The sensitivity of turbulent dynamics in spatially evolving mixing layers to small skew angles is investigated via direct numerical simulation. Angle is a measure of the lack of parallelism between the two asymptotic flows, whose interaction creates the turbulent mixing region. The analysis is performed considering a large range of values of the shear intensity parameter . This two-dimensional parameter space is explored using the results of a database of 18 direct numerical simulations. Instantaneous fields as well as time-averaged quantities are investigated, highlighting important mechanisms in the emergence of turbulence and its characteristics for this class of flows. In addition, a stochastic approach is used in which and are considered as random variables with a given probability distribution. The response surfaces of flow statistics in the parameter space are built through non-intrusive generalized polynomial chaos. It is found that variations of the parameter have a primary effect on the growth of the mixing region. A secondary effect associated with is observed as well. Higher values for the skew angle are responsible for a rapid increase in growth of the inlet structures, enhancing the development of the mixing region. The impact on the turbulence features and, in particular, on the Reynolds stress tensor is also significant. A modification of the normalized diagonal components of the Reynolds stress tensor due to is observed. In addition, the interaction between the parameters and is here the governing element.
M. Meldi, A. Mariotti, M. Salvetti, P. Sagaut. Numerical investigation of skewed spatially evolving mixing layers. Journal of Fluid Mechanics, Cambridge University Press (CUP), 2020, 897, pp.A35. ⟨10.1017/jfm.2020.407⟩. ⟨hal-03251559⟩
Etienne Loiseau, Simon Gsell, Aude Nommick, Charline Jomard, Delphine Gras, et al.. Active mucus–cilia hydrodynamic coupling drives self-organization of human bronchial epithelium. Nature Physics, Nature Publishing Group, 2020, ⟨10.1038/s41567-020-0980-z⟩. ⟨hal-02914172⟩ Plus de détails...
The respiratory tract is protected by mucus, a complex fluid transported along the epithelial surface by the coordinated beating of millions of microscopic cilia, hence the name of mucociliary clearance. Its impairment is associated with all severe chronic respiratory diseases. Yet, the relationship between ciliary density and the spatial scale of mucus transport, as well as the mechanisms that drive ciliary-beat orientations are much debated. Here, we show on polarized human bronchial epithelia that mucus swirls and circular orientational order of the underlying ciliary beats emerge and grow during ciliogenesis, until a macroscopic mucus transport is achieved for physiological ciliary densities. By establishing that the macroscopic ciliary-beat order is lost and recovered by removing and adding mucus, respectively, we demonstrate that cilia–mucus hydrodynamic interactions govern the collective dynamics of ciliary-beat directions. We propose a two-dimensional model that predicts a phase diagram of mucus transport in accordance with the experiments. This paves the way to a predictive in silico modelling of bronchial mucus transport in health and disease.
Etienne Loiseau, Simon Gsell, Aude Nommick, Charline Jomard, Delphine Gras, et al.. Active mucus–cilia hydrodynamic coupling drives self-organization of human bronchial epithelium. Nature Physics, Nature Publishing Group, 2020, ⟨10.1038/s41567-020-0980-z⟩. ⟨hal-02914172⟩
Jérémie Labasse, Uwe Ehrenstein, Philippe Meliga. Numerical exploration of the pitching plate parameter space with application to thrust scaling. Applied Ocean Research, Elsevier, 2020, 101, pp.102278. ⟨10.1016/j.apor.2020.102278⟩. ⟨hal-02903603⟩ Plus de détails...
Jérémie Labasse, Uwe Ehrenstein, Philippe Meliga. Numerical exploration of the pitching plate parameter space with application to thrust scaling. Applied Ocean Research, Elsevier, 2020, 101, pp.102278. ⟨10.1016/j.apor.2020.102278⟩. ⟨hal-02903603⟩
Uwe Ehrenstein, Jérémie Labasse, Philippe Meliga. Numerical exploration of the pitching plate parameter space with application to thrust scaling. Applied Ocean Research, Elsevier, 2020, 101, pp.102278. ⟨10.1016/j.apor.2020.102278⟩. ⟨hal-03235146⟩ Plus de détails...
The thrust performance of a two-dimensional plate pitching harmonically in a uniform flow is assessed numerically using the OpenFOAM toolbox [1]. The mesh displacement vector associated with the rigid body motion is computed as the solution of a Laplace equation with variable diffusivity, using the appropriate mesh manipulation class of the toolbox. For a Reynolds number of 2000, the accuracy of the pressure and viscous stress distributions is assessed by comparison with reference data available for an equivalent fluid configuration. The efficiency and flexibility of the solver allows exploring large ranges of the pitching parameter space, that is the pitching frequency, amplitude and pivot-point location of the pitching plate. The forces induced by the pitching motion are computed for pitching amplitudes up to 15 ∘ , for Strouhal numbers varying between 0.2 and 0.5 and for different pitch pivot points. Performing a thrust scaling analysis, a classical theoretical model for the swimming of a waving plate is reliably fitted to the numerical pressure force data. The dependence of the time averaged thrust with the pitching axis is shown to be predicted accurately by a classical potential flow formula (known as Garrick's theory) for pivot points within the front quarter of the plate. The viscous drag is computed as well for the Reynolds number 2000. The time-averaged values are shown to depend on the pitching amplitude and frequency and for instance a Blasius-type scaling, sometimes used to model the viscous drag correction for oscillating two-dimensional foils in this Reynolds number range, is not reliable.
Uwe Ehrenstein, Jérémie Labasse, Philippe Meliga. Numerical exploration of the pitching plate parameter space with application to thrust scaling. Applied Ocean Research, Elsevier, 2020, 101, pp.102278. ⟨10.1016/j.apor.2020.102278⟩. ⟨hal-03235146⟩
Uwe Ehrenstein, Jérémie Labasse, Philippe Meliga. Numerical exploration of the pitching plate parameter space with application to thrust scaling. Applied Ocean Research, Elsevier, 2020, 101, pp.102278. ⟨10.1016/j.apor.2020.102278⟩. ⟨hal-03235146⟩ Plus de détails...
The thrust performance of a two-dimensional plate pitching harmonically in a uniform flow is assessed numerically using the OpenFOAM toolbox [1]. The mesh displacement vector associated with the rigid body motion is computed as the solution of a Laplace equation with variable diffusivity, using the appropriate mesh manipulation class of the toolbox. For a Reynolds number of 2000, the accuracy of the pressure and viscous stress distributions is assessed by comparison with reference data available for an equivalent fluid configuration. The efficiency and flexibility of the solver allows exploring large ranges of the pitching parameter space, that is the pitching frequency, amplitude and pivot-point location of the pitching plate. The forces induced by the pitching motion are computed for pitching amplitudes up to 15 ∘ , for Strouhal numbers varying between 0.2 and 0.5 and for different pitch pivot points. Performing a thrust scaling analysis, a classical theoretical model for the swimming of a waving plate is reliably fitted to the numerical pressure force data. The dependence of the time averaged thrust with the pitching axis is shown to be predicted accurately by a classical potential flow formula (known as Garrick's theory) for pivot points within the front quarter of the plate. The viscous drag is computed as well for the Reynolds number 2000. The time-averaged values are shown to depend on the pitching amplitude and frequency and for instance a Blasius-type scaling, sometimes used to model the viscous drag correction for oscillating two-dimensional foils in this Reynolds number range, is not reliable.
Uwe Ehrenstein, Jérémie Labasse, Philippe Meliga. Numerical exploration of the pitching plate parameter space with application to thrust scaling. Applied Ocean Research, Elsevier, 2020, 101, pp.102278. ⟨10.1016/j.apor.2020.102278⟩. ⟨hal-03235146⟩
Sylvia Wilhelm, Jérôme Jacob, Pierre Sagaut. A New Explicit Algebraic Wall Model for LES of Turbulent Flows Under Adverse Pressure Gradient. Flow, Turbulence and Combustion, Springer Verlag (Germany), 2020, ⟨10.1007/s10494-020-00181-7⟩. ⟨hal-02960184⟩ Plus de détails...
A new explicit algebraic wall law for the Large Eddy Simulation of flows with adverse pressure gradient is proposed. This new wall law, referred as adverse pressure gradient power law (APGPL), is developed starting from the power-law of Werner and Wengle (Turbulent Shear Flows, vol 8, Springer, New York, pp 155-168, 1993) in order to mimic an implicit non-equilibrium log-law based on Afzal's law (Afzal, IUTAM Symposium on Asymptotic Methods for Turbulent Shear Flows at High Reynolds Numbers, Kluwer Academic Publishers, Bochum, pp 95-118, 1996). No iterative method is needed for the evaluation of the wall shear stress from the APGPL contrary to the majority of models available in the literature. The APGPL model relies on the definition of three modes: the equilibrium power-law is used in regions of no or favourable pressure gradient, the APGPL is used in regions of adverse pressure gradient, and no wall model is used in separated flow regions. This model is assessed via Large Eddy Simulations of flows involving adverse pressure gradient and boundary layer separation using the Lattice Boltzmann Method on uniform nested grids. The flow around a clean and iced NACA23012 airfoil at Reynolds numberRe=1.88 x 10(6) and the flow over the LAGOON landing gear at Re=1.59x10(6) are considered. Results are found in good agreement with those obtained by the non-equilibrium log-law and experimental and numerical data available in the literature.
Sylvia Wilhelm, Jérôme Jacob, Pierre Sagaut. A New Explicit Algebraic Wall Model for LES of Turbulent Flows Under Adverse Pressure Gradient. Flow, Turbulence and Combustion, Springer Verlag (Germany), 2020, ⟨10.1007/s10494-020-00181-7⟩. ⟨hal-02960184⟩
Shahram Khazaie, Régis Cottereau. Influence of local cubic anisotropy on the transition towards an equipartition regime in a 3D texture-less random elastic medium. Wave Motion, Elsevier, 2020, 96, pp.102574. ⟨10.1016/j.wavemoti.2020.102574⟩. ⟨hal-02566857⟩ Plus de détails...
At long lapse times in randomly fluctuating media with macroscopic isotropy (texture-less media), the energy of elastic waves is equipartitioned between compressional (P) and shear (S) waves. This property is independent of the local isotropy or anisotropy of the heterogeneous constitutive tensor and of the type of source. However the local symmetry of the constitutive tensor does influence the rate of convergence to equipartition and this paper discusses the precise influence of local anisotropy on the time required to reach equipartition. More particularly, a randomly-fluctuating medium is considered, whose behavior is statistically isotropic, and locally cubic. After calculating all the differential and total scattering cross-sections in that case, an analytical formula is derived for the rate of convergence to the equipartition regime, function of the second-order statistics of the mechanical parameter fields (bulk and shear moduli and anisotropy parameter). The local anisotropy is shown to influence strongly that transition rate, with a faster transition when the fluctuations of the anisotropy parameter are positively correlated to those of the shear modulus. A numerical model is constructed to illustrate numerically these results. Since the asymptotic regime of equipartition cannot be simulated directly because it would require too large a computational domain, boundaries are introduced and mechanical properties are chosen so as to minimize their influence on equipartition.
Shahram Khazaie, Régis Cottereau. Influence of local cubic anisotropy on the transition towards an equipartition regime in a 3D texture-less random elastic medium. Wave Motion, Elsevier, 2020, 96, pp.102574. ⟨10.1016/j.wavemoti.2020.102574⟩. ⟨hal-02566857⟩
G. Farag, S. Zhao, T. Coratger, Pierre Boivin, G. Chiavassa, et al.. A pressure-based regularized lattice-Boltzmann method for the simulation of compressible flows. Physics of Fluids, American Institute of Physics, 2020, 32 (6), pp.066106. ⟨10.1063/5.0011839⟩. ⟨hal-02885427⟩ Plus de détails...
A new pressure-based Lattice-Boltzmann method (HRR-p) is proposed for the simulation of flows for Mach numbers ranging from 0 to 1.5. Compatible with nearest neighbor lattices (e.g. D3Q19), the model consists of a predictor step comparable to classical athermal Lattice-Boltzmann methods, appended with a fully local and explicit correction step for the pressure. Energy conservation-for which the Hermi-tian quadrature is not accurate enough on such lattice-is solved via a classical finite volume MUSCL-Hancock scheme based on the entropy equation. The Euler part of the model is then validated for the transport of three canonical modes (vortex, en-tropy, and acoustic propagation), while its diffusive/viscous properties are assessed via thermal Couette flow simulations. All results match the analytical solutions, with very limited dissipation. Lastly, the robustness of the method is tested in a one dimensional shock tube and a two-dimensional shock-vortex interaction.
G. Farag, S. Zhao, T. Coratger, Pierre Boivin, G. Chiavassa, et al.. A pressure-based regularized lattice-Boltzmann method for the simulation of compressible flows. Physics of Fluids, American Institute of Physics, 2020, 32 (6), pp.066106. ⟨10.1063/5.0011839⟩. ⟨hal-02885427⟩
Y. Feng, S. Guo, J. Jacob, P. Sagaut. Grid refinement in the three-dimensional hybrid recursive regularized lattice Boltzmann method for compressible aerodynamics. Physical Review E , American Physical Society (APS), 2020, 101 (6), pp.063302. ⟨10.1103/PhysRevE.101.063302⟩. ⟨hal-02892273⟩ Plus de détails...
Grid refinement techniques are of paramount importance for computational fluid dynamics approaches relying on the use of Cartesian grids. This is especially true of solvers dedicated to aerodynamics, in which the capture of thin shear layers require the use of small cells. In this paper, a three-dimensional grid refinement technique is developed within the framework of hybrid recursive regularized lattice Boltzmann method (HRR-LBM) for compressible high-speed flows, which is an efficient collide-stream-type method on a compact D3Q19 stencil. The proposed method is successfully assessed considering several test cases, namely, an isentropic vortex propagating through transition interface, shock-vortex interaction with intersection between grid refinement interface and shock corrugation, and transonic flows over three-dimensional DLR-M6 wing with seven levels of grid refinement.
Y. Feng, S. Guo, J. Jacob, P. Sagaut. Grid refinement in the three-dimensional hybrid recursive regularized lattice Boltzmann method for compressible aerodynamics. Physical Review E , American Physical Society (APS), 2020, 101 (6), pp.063302. ⟨10.1103/PhysRevE.101.063302⟩. ⟨hal-02892273⟩
Y. Feng, S. Guo, J. Jacob, P. Sagaut. Grid refinement in the three-dimensional hybrid recursive regularized lattice Boltzmann method for compressible aerodynamics. Physical Review E , American Physical Society (APS), 2020, 101 (6), pp.063302. ⟨10.1103/PhysRevE.101.063302⟩. ⟨hal-03228997⟩ Plus de détails...
Grid refinement techniques are of paramount importance for computational fluid dynamics approaches relying on the use of Cartesian grids. This is especially true of solvers dedicated to aerodynamics, in which the capture of thin shear layers require the use of small cells. In this paper, a three-dimensional grid refinement technique is developed within the framework of hybrid recursive regularized lattice Boltzmann method (HRR-LBM) for compressible high-speed flows, which is an efficient collide-stream-type method on a compact D3Q19 stencil. The proposed method is successfully assessed considering several test cases, namely, an isentropic vortex propagating through transition interface, shock-vortex interaction with intersection between grid refinement interface and shock corrugation, and transonic flows over three-dimensional DLR-M6 wing with seven levels of grid refinement.
Y. Feng, S. Guo, J. Jacob, P. Sagaut. Grid refinement in the three-dimensional hybrid recursive regularized lattice Boltzmann method for compressible aerodynamics. Physical Review E , American Physical Society (APS), 2020, 101 (6), pp.063302. ⟨10.1103/PhysRevE.101.063302⟩. ⟨hal-03228997⟩
Y. Feng, S. Guo, J. Jacob, P. Sagaut. Grid refinement in the three-dimensional hybrid recursive regularized lattice Boltzmann method for compressible aerodynamics. Physical Review E , American Physical Society (APS), 2020, 101 (6), pp.063302. ⟨10.1103/PhysRevE.101.063302⟩. ⟨hal-03228997⟩ Plus de détails...
Grid refinement techniques are of paramount importance for computational fluid dynamics approaches relying on the use of Cartesian grids. This is especially true of solvers dedicated to aerodynamics, in which the capture of thin shear layers require the use of small cells. In this paper, a three-dimensional grid refinement technique is developed within the framework of hybrid recursive regularized lattice Boltzmann method (HRR-LBM) for compressible high-speed flows, which is an efficient collide-stream-type method on a compact D3Q19 stencil. The proposed method is successfully assessed considering several test cases, namely, an isentropic vortex propagating through transition interface, shock-vortex interaction with intersection between grid refinement interface and shock corrugation, and transonic flows over three-dimensional DLR-M6 wing with seven levels of grid refinement.
Y. Feng, S. Guo, J. Jacob, P. Sagaut. Grid refinement in the three-dimensional hybrid recursive regularized lattice Boltzmann method for compressible aerodynamics. Physical Review E , American Physical Society (APS), 2020, 101 (6), pp.063302. ⟨10.1103/PhysRevE.101.063302⟩. ⟨hal-03228997⟩
Simon Gsell, Etienne Loiseau, Umberto D’ortona, Annie Viallat, Julien Favier. Hydrodynamic model of directional ciliary-beat organization in human airways. Scientific Reports, Nature Publishing Group, 2020, 10 (8405), ⟨10.1038/s41598-020-64695-w⟩. ⟨hal-02614711⟩ Plus de détails...
In the lung, the airway surface is protected by mucus, whose transport and evacuation is ensured through active ciliary beating. the mechanisms governing the long-range directional organization of ciliary beats, required for effective mucus transport, are much debated. Here, we experimentally show on human bronchial epithelium reconstituted in-vitro that the dynamics of ciliary-beat orientation is closely connected to hydrodynamic effects. To examine the fundamental mechanisms of this self-organization process, we build a two-dimensional model in which the hydrodynamic coupling between cilia is provided by a streamwise-alignment rule governing the local orientation of the ciliary forcing. The model reproduces the emergence of the mucus swirls observed in the experiments. The predicted swirl sizes, which scale with the ciliary density and mucus viscosity, are in agreement with in-vitro measurements. A transition from the swirly regime to a long-range unidirectional mucus flow allowing effective clearance occurs at high ciliary density and high mucus viscosity. In the latter case, the mucus flow tends to spontaneously align with the bronchus axis due to hydrodynamic effects.
Simon Gsell, Etienne Loiseau, Umberto D’ortona, Annie Viallat, Julien Favier. Hydrodynamic model of directional ciliary-beat organization in human airways. Scientific Reports, Nature Publishing Group, 2020, 10 (8405), ⟨10.1038/s41598-020-64695-w⟩. ⟨hal-02614711⟩
Elena Alekseenko, Bernard Roux. Risk of wind-driven resuspension and transport of contaminated sediments in a narrow marine channel confluencing a wide lagoon. Estuarine, Coastal and Shelf Science, Elsevier, 2020, 237, pp.106649. ⟨10.1016/j.ecss.2020.106649⟩. ⟨hal-02524483⟩ Plus de détails...
Elena Alekseenko, Bernard Roux. Risk of wind-driven resuspension and transport of contaminated sediments in a narrow marine channel confluencing a wide lagoon. Estuarine, Coastal and Shelf Science, Elsevier, 2020, 237, pp.106649. ⟨10.1016/j.ecss.2020.106649⟩. ⟨hal-02524483⟩
Elena Alekseenko, Bernard Roux. Risk of wind-driven resuspension and transport of contaminated sediments in a narrow marine channel confluencing a wide lagoon. Estuarine, Coastal and Shelf Science, Elsevier, 2020, 237, pp.106649. ⟨10.1016/j.ecss.2020.106649⟩. ⟨hal-03251615⟩ Plus de détails...
This work concerns the wind-driven resuspension in a narrow marine channel and the risk of transport of contaminated bottom sediments in a wide brackish lagoon in the context of a planned anthropogenic infrastructure (with forced convection, by pumping sea water). It is based on the modelling and 3D numerical simulation of salinity, current distributions and bottom shear stress (BSS). The goal is to demonstrate that, even for narrow channels of a few tens of meter of width, a wind of 10-20 m/s is sufficient to create intensive currents, to resuspend muddy bottom sediments and transport polluted sediments downstream. Several model scenarios are considered for such wind speeds in two dominant and opposite wind directions, for a channel whose bottom sediments are mainly constituted of fine particles, typically 85% of mud and 15% of fine sand. It is known that finer sediments usually play an important role to transport contaminants (due to larger surface area of smaller particles). Our main results concern the bottom shear stress along such a long and narrow channel; namely the Rove channel which confluences the Etang de Berre lagoon, and for which a project of forced current circulation is planned by pumping sea water. Our numerical results show that the mobility threshold can be easily overpassed for the muddy sediments in the Rove channel. For a bottom roughness of 5 μm (coarse silt) and a wind speed of 20 m/s, BSS can reach 0.18 N/m 2 for the N-NW wind in the median part of the channel, and even 0.21 N/m 2 in one enlargement for the S-SE wind, while BSS cr is about 0.1 N/m 2. We conclude that these local winds can permit floc erosion and even surface erosion of fine sediments in the Rove channel. Concerning the resuspension of muddy sediments, our results are consistent with the experimental study presented by Carlin et al. (2016) for a windy shallow lagoon. They are also consistent with the conclusion of Mengual et al. (2017), from erodimetry experiment for estuarine sediments, that the sediment behaves like a pure mud if the percentage of the mud fraction is more than 70%, and that the critical BSS for mobility of such bed sediments is of the order of 0.1 N/m 2. Such a lower critical BSS when the mixture is muddier is opposite to trends most often published.
Elena Alekseenko, Bernard Roux. Risk of wind-driven resuspension and transport of contaminated sediments in a narrow marine channel confluencing a wide lagoon. Estuarine, Coastal and Shelf Science, Elsevier, 2020, 237, pp.106649. ⟨10.1016/j.ecss.2020.106649⟩. ⟨hal-03251615⟩
Elena Alekseenko, Bernard Roux. Risk of wind-driven resuspension and transport of contaminated sediments in a narrow marine channel confluencing a wide lagoon. Estuarine, Coastal and Shelf Science, Elsevier, 2020, 237, pp.106649. ⟨10.1016/j.ecss.2020.106649⟩. ⟨hal-03251615⟩ Plus de détails...
This work concerns the wind-driven resuspension in a narrow marine channel and the risk of transport of contaminated bottom sediments in a wide brackish lagoon in the context of a planned anthropogenic infrastructure (with forced convection, by pumping sea water). It is based on the modelling and 3D numerical simulation of salinity, current distributions and bottom shear stress (BSS). The goal is to demonstrate that, even for narrow channels of a few tens of meter of width, a wind of 10-20 m/s is sufficient to create intensive currents, to resuspend muddy bottom sediments and transport polluted sediments downstream. Several model scenarios are considered for such wind speeds in two dominant and opposite wind directions, for a channel whose bottom sediments are mainly constituted of fine particles, typically 85% of mud and 15% of fine sand. It is known that finer sediments usually play an important role to transport contaminants (due to larger surface area of smaller particles). Our main results concern the bottom shear stress along such a long and narrow channel; namely the Rove channel which confluences the Etang de Berre lagoon, and for which a project of forced current circulation is planned by pumping sea water. Our numerical results show that the mobility threshold can be easily overpassed for the muddy sediments in the Rove channel. For a bottom roughness of 5 μm (coarse silt) and a wind speed of 20 m/s, BSS can reach 0.18 N/m 2 for the N-NW wind in the median part of the channel, and even 0.21 N/m 2 in one enlargement for the S-SE wind, while BSS cr is about 0.1 N/m 2. We conclude that these local winds can permit floc erosion and even surface erosion of fine sediments in the Rove channel. Concerning the resuspension of muddy sediments, our results are consistent with the experimental study presented by Carlin et al. (2016) for a windy shallow lagoon. They are also consistent with the conclusion of Mengual et al. (2017), from erodimetry experiment for estuarine sediments, that the sediment behaves like a pure mud if the percentage of the mud fraction is more than 70%, and that the critical BSS for mobility of such bed sediments is of the order of 0.1 N/m 2. Such a lower critical BSS when the mixture is muddier is opposite to trends most often published.
Elena Alekseenko, Bernard Roux. Risk of wind-driven resuspension and transport of contaminated sediments in a narrow marine channel confluencing a wide lagoon. Estuarine, Coastal and Shelf Science, Elsevier, 2020, 237, pp.106649. ⟨10.1016/j.ecss.2020.106649⟩. ⟨hal-03251615⟩
Gauthier Wissocq, Jean-François Boussuge, Pierre Sagaut. Consistent vortex initialization for the athermal lattice Boltzmann method. Physical Review E , American Physical Society (APS), 2020, 101 (4), ⟨10.1103/PhysRevE.101.043306⟩. ⟨hal-02892501⟩ Plus de détails...
A barotropic counterpart of the well-known convected vortex test case is rigorously derived from the Euler equations along with an athermal equation of state. Starting from a given velocity distribution corresponding to an intended flow recirculation, the athermal counterpart of the Euler equations are solved to obtain a consistent density field. The present initialization is assessed on a standard lattice Boltzmann solver based on the D2Q9 lattice. Compared to the usual isentropic initialization, a much lower spurious relaxation toward the targeted solution is observed, which is due to the spatial resolution rather than approximated macroscopic quantities. The amplitude of the spurious waves can be further reduced by including an off-equilibrium part in the initial distribution functions.
Gauthier Wissocq, Jean-François Boussuge, Pierre Sagaut. Consistent vortex initialization for the athermal lattice Boltzmann method. Physical Review E , American Physical Society (APS), 2020, 101 (4), ⟨10.1103/PhysRevE.101.043306⟩. ⟨hal-02892501⟩
Gauthier Wissocq, Jean-François Boussuge, Pierre Sagaut. Consistent vortex initialization for the athermal lattice Boltzmann method. Physical Review E , American Physical Society (APS), 2020, 101 (4), ⟨10.1103/PhysRevE.101.043306⟩. ⟨hal-02892501⟩ Plus de détails...
A barotropic counterpart of the well-known convected vortex test case is rigorously derived from the Euler equations along with an athermal equation of state. Starting from a given velocity distribution corresponding to an intended flow recirculation, the athermal counterpart of the Euler equations are solved to obtain a consistent density field. The present initialization is assessed on a standard lattice Boltzmann solver based on the D2Q9 lattice. Compared to the usual isentropic initialization, a much lower spurious relaxation toward the targeted solution is observed, which is due to the spatial resolution rather than approximated macroscopic quantities. The amplitude of the spurious waves can be further reduced by including an off-equilibrium part in the initial distribution functions.
Gauthier Wissocq, Jean-François Boussuge, Pierre Sagaut. Consistent vortex initialization for the athermal lattice Boltzmann method. Physical Review E , American Physical Society (APS), 2020, 101 (4), ⟨10.1103/PhysRevE.101.043306⟩. ⟨hal-02892501⟩
Gauthier Wissocq, Jean-François Boussuge, Pierre Sagaut. Consistent vortex initialization for the athermal lattice Boltzmann method. Physical Review E , American Physical Society (APS), 2020, 101 (4), ⟨10.1103/PhysRevE.101.043306⟩. ⟨hal-03229006⟩ Plus de détails...
A barotropic counterpart of the well-known convected vortex test case is rigorously derived from the Euler equations along with an athermal equation of state. Starting from a given velocity distribution corresponding to an intended flow recirculation, the athermal counterpart of the Euler equations are solved to obtain a consistent density field. The present initialization is assessed on a standard lattice Boltzmann solver based on the D2Q9 lattice. Compared to the usual isentropic initialization, a much lower spurious relaxation toward the targeted solution is observed, which is due to the spatial resolution rather than approximated macroscopic quantities. The amplitude of the spurious waves can be further reduced by including an off-equilibrium part in the initial distribution functions.
Gauthier Wissocq, Jean-François Boussuge, Pierre Sagaut. Consistent vortex initialization for the athermal lattice Boltzmann method. Physical Review E , American Physical Society (APS), 2020, 101 (4), ⟨10.1103/PhysRevE.101.043306⟩. ⟨hal-03229006⟩
T. Lyubimova, A. Lepikhin, Ya. Parshakova, C. Gualtieri, S. Lane, et al.. Influence of Hydrodynamic Regimes on Mixing of Waters of Confluent Rivers. Journal of Applied Mechanics and Technical Physics, Springer Verlag, 2020, 60 (7), pp.1220-1227. ⟨10.1134/S0021894419070083⟩. ⟨hal-02989585⟩ Plus de détails...
At present, a significant weakening of the intensity of transverse mixing at the confluence of large rivers, which is observed in a number of cases, is widely discussed. Since the observed features of the confluence of large watercourses are not only of research interest but also of significant economic importance associated with the characteristics of water management at these water bodies, a large number of works are devoted to their study. Water resources management requires measures for the organization of water use which can be rational only under the understanding of processes occurring in water basins. To explain the phenomenon of suppression of the transverse mixing, which is interesting and important from the point of view of ecology, a wide range of hypotheses is proposed, up to the negation of turbulence in rivers. One of the possible mechanisms for explaining the suppression of transversal mixing can be the presence of transverse circulation manifesting itself as Prandtl’s secondary flows of the second kind. The characteristic velocity of these circulation flows is very small and difficult to measure directly by instruments; however, in our opinion, they can significantly complicate the transverse mixing at the confluence. The proposed hypothesis is tested in computational experiments in the framework of the three-dimensional formulation for dimensions of a real water object at the mouth of the Vishera River where it meets the Kama. Calculations demonstrate that, at sufficiently large flow rates, the two waters practically do not mix in the horizontal direction throughout the depth over long distances from the confluence. It has been found that a two-vortex flow is formed downstream the confluence, which just attenuates the mixing; the fluid motion in the vortices is such that, near the free surface, the fluid moves from the banks to the middle of the riverbed.
T. Lyubimova, A. Lepikhin, Ya. Parshakova, C. Gualtieri, S. Lane, et al.. Influence of Hydrodynamic Regimes on Mixing of Waters of Confluent Rivers. Journal of Applied Mechanics and Technical Physics, Springer Verlag, 2020, 60 (7), pp.1220-1227. ⟨10.1134/S0021894419070083⟩. ⟨hal-02989585⟩
Journal: Journal of Applied Mechanics and Technical Physics
Simon Gsell, Umberto d'Ortona, Julien Favier. Multigrid dual-time-stepping lattice Boltzmann method. Physical Review E , American Physical Society (APS), 2020, 101 (2), ⟨10.1103/PhysRevE.101.023309⟩. ⟨hal-02573156⟩ Plus de détails...
The lattice Boltzmann method often involves small numerical time steps due to the acoustic scaling (i.e., scaling between time step and grid size) inherent to the method. In this work, a second-order dual-time-stepping lattice Boltzmann method is proposed in order to avoid any time-step restriction. The implementation of the dual time stepping is based on an external source in the lattice Boltzmann equation, related to the time derivatives of the macroscopic flow quantities. Each time step is treated as a pseudosteady problem. The convergence rate of the steady lattice Boltzmann solver is improved by implementing a multigrid method. The developed solver is based on a two-relaxation time model coupled to an immersed-boundary method. The reliability of the method is demonstrated for steady and unsteady laminar flows past a circular cylinder, either fixed or towed in the computational domain. In the steady-flow case, the multigrid method drastically increases the convergence rate of the lattice Boltzmann method. The dual-time-stepping method is able to accurately reproduce the unsteady flows. The physical time step can be freely adjusted; its effect on the simulation cost is linear, while its impact on the accuracy follows a second-order trend. Two major advantages arise from this feature. (i) Simulation speed-up can be achieved by increasing the time step while conserving a reasonable accuracy. A speed-up of 4 is achieved for the unsteady flow past a fixed cylinder, and higher speed-ups are expected for configurations involving slower flow variations. Significant additional speed-up can also be achieved by accelerating transients. (ii) The choice of the time step allows us to alter the range of simulated timescales. In particular, increasing the time step results in the filtering of undesired pressure waves induced by sharp geometries or rapid temporal variations, without altering the main flow dynamics. These features may be critical to improve the efficiency and range of applicability of the lattice Boltzmann method.
Simon Gsell, Umberto d'Ortona, Julien Favier. Multigrid dual-time-stepping lattice Boltzmann method. Physical Review E , American Physical Society (APS), 2020, 101 (2), ⟨10.1103/PhysRevE.101.023309⟩. ⟨hal-02573156⟩
Christophe Friess, Lars Davidson. A formulation of PANS capable of mimicking IDDES. International Journal of Heat and Fluid Flow, Elsevier, 2020, 86, pp.108666. ⟨10.1016/j.ijheatfluidflow.2020.108666⟩. ⟨hal-03232146⟩ Plus de détails...
The partially averaged Navier-Stokes (PANS) model, proposed in Girimaji (2006), allows to simulate turbulent flows either in RANS, LES or DNS mode. The PANS model includes f k which denotes the ratio of modeled to total kinetic energy. In RANS, f k = 1 while in DNS it tends to zero. In the present study we propose an improved formulation for f k based on the H-equivalence introduced by Friess et al. (2015). In this formulation the expression of f k is derived to mimic Improved Delayed Detached Eddy Simulation (IDDES). This new formulation behaves in a very similar way as IDDES, even though the two formulations use different mechanisms to separate modeled and resolved scales. They show very similar performance in separated flows as well as in attached boundary layers. In particular, the novel formulation is able to (i) treat attached boundary layers as properly as IDDES, and (ii) "detect" laminar initial/boundary conditions, in which case it enforces RANS mode. Furthermore, it is found that the new formulation is numerically more stable than IDDES.
Christophe Friess, Lars Davidson. A formulation of PANS capable of mimicking IDDES. International Journal of Heat and Fluid Flow, Elsevier, 2020, 86, pp.108666. ⟨10.1016/j.ijheatfluidflow.2020.108666⟩. ⟨hal-03232146⟩
Journal: International Journal of Heat and Fluid Flow
G Giorgiani, H. Bufferand, F. Schwander, E. Serre, P. Tamain. A high-order non field-aligned approach for the discretization of strongly anistropic diffusion operators in magnetic fusion. Computer Physics Communications, Elsevier, 2020, 254, pp.107375. ⟨10.1016/j.cpc.2020.107375⟩. ⟨hal-02613709⟩ Plus de détails...
In this work we present a hybrid discontinuous Galerkin scheme for the solution of extremely anisotropic diffusion problems arising in magnetized plasmas for fusion applications. Unstructured meshes, non-aligned with respect to the dominant diffusion direction, allow an unequalled flexibility in discretizing geometries of any shape, but may lead to spurious numerical diffusion. Curved triangles or quadrangles are used to discretize the poloidal plane of the machine, while a structured discretization is used in the toroidal direction. The proper design of the numerical fluxes guarantees the correct convergence order at any anisotropy level. Computations performed on well-designed 2D and 3D numerical tests show that non-aligned discretizations are able to provide spurious diffusion free solutions as long as high-order interpolations are used. Introducing an explicit measure of the numerical diffusion, a careful investigation is carried out showing an exponential increase of this latest with respect to the non-alignment of the mesh with the diffusion direction, as well as an exponential decrease with the polynomial degree of interpolation. A brief assessment of the method with respect to two finite-difference schemes using non-aligned discretization, but classically used in fusion modeling, is also presented.
G Giorgiani, H. Bufferand, F. Schwander, E. Serre, P. Tamain. A high-order non field-aligned approach for the discretization of strongly anistropic diffusion operators in magnetic fusion. Computer Physics Communications, Elsevier, 2020, 254, pp.107375. ⟨10.1016/j.cpc.2020.107375⟩. ⟨hal-02613709⟩
S. Guo, Yongliang Feng, Jérôme Jacob, F. Renard, Pierre Sagaut. An efficient lattice Boltzmann method for compressible aerodynamics on D3Q19 lattice. Journal of Computational Physics, Elsevier, 2020, 418, pp.109570. ⟨10.1016/j.jcp.2020.109570⟩. ⟨hal-03232070⟩ Plus de détails...
An efficient lattice Boltzmann (LB) model relying on a hybrid recursive regularization (HRR) collision operator on D3Q19 stencil is proposed for the simulation of three-dimensional high-speed compressible flows in both subsonic and supersonic regimes. An improved thermal equilibrium distribution function on D3Q19 lattice is derived to reduce the complexity of correcting terms. A simple shock capturing scheme and an upwind biased discretization of correction terms are implemented for supersonic flows with shocks. Mass and momentum equations are recovered by an efficient streaming, collision and forcing process on D3Q19 lattice. Then a non-conservative formulation of the entropy evolution equation is used, that is solved using a finite volume method. The proposed method is assessed considering the simulation of i) 2D isentropic vortex convection, ii) 3D non-isothermal acoustic pulse, iii) 2D supersonic flow over a bump, iv) 3D shock explosion in a box, v) 2D vortex interaction with shock wave, vi) 2D laminar flows over a flat plate at Ma of 0.5, 1.0 and 1.5.
S. Guo, Yongliang Feng, Jérôme Jacob, F. Renard, Pierre Sagaut. An efficient lattice Boltzmann method for compressible aerodynamics on D3Q19 lattice. Journal of Computational Physics, Elsevier, 2020, 418, pp.109570. ⟨10.1016/j.jcp.2020.109570⟩. ⟨hal-03232070⟩
Sylvia Wilhelm, Jérôme Jacob, Pierre Sagaut. A New Explicit Algebraic Wall Model for LES of Turbulent Flows Under Adverse Pressure Gradient. Flow, Turbulence and Combustion, Springer Verlag (Germany), 2020, 106 (1), pp.1-35. ⟨10.1007/s10494-020-00181-7⟩. ⟨hal-03231798⟩ Plus de détails...
A new explicit algebraic wall law for the Large Eddy Simulation of flows with adverse pressure gradient is proposed. This new wall law, referred as adverse pressure gradient power law (APGPL), is developed starting from the power-law of Werner and Wengle (Turbulent Shear Flows, vol 8, Springer, New York, pp 155-168, 1993) in order to mimic an implicit non-equilibrium log-law based on Afzal's law (Afzal, IUTAM Symposium on Asymptotic Methods for Turbulent Shear Flows at High Reynolds Numbers, Kluwer Academic Publishers, Bochum, pp 95-118, 1996). No iterative method is needed for the evaluation of the wall shear stress from the APGPL contrary to the majority of models available in the literature. The APGPL model relies on the definition of three modes: the equilibrium power-law is used in regions of no or favourable pressure gradient, the APGPL is used in regions of adverse pressure gradient, and no wall model is used in separated flow regions. This model is assessed via Large Eddy Simulations of flows involving adverse pressure gradient and boundary layer separation using the Lattice Boltzmann Method on uniform nested grids. The flow around a clean and iced NACA23012 airfoil at Reynolds numberRe=1.88 x 10(6) and the flow over the LAGOON landing gear at Re=1.59x10(6) are considered. Results are found in good agreement with those obtained by the non-equilibrium log-law and experimental and numerical data available in the literature.
Sylvia Wilhelm, Jérôme Jacob, Pierre Sagaut. A New Explicit Algebraic Wall Model for LES of Turbulent Flows Under Adverse Pressure Gradient. Flow, Turbulence and Combustion, Springer Verlag (Germany), 2020, 106 (1), pp.1-35. ⟨10.1007/s10494-020-00181-7⟩. ⟨hal-03231798⟩
A Gineau, E. Longatte, D. Lucor, P. Sagaut. Macroscopic model of fluid structure interaction in cylinder arrangement using theory of mixture. Computers and Fluids, Elsevier, 2020, 202, pp.104499. ⟨10.1016/j.compfluid.2020.104499⟩. ⟨hal-03251640⟩ Plus de détails...
In the framework of the theory of mixture, the dynamic behaviour of solid cylinder bundles submitted to external hydrodynamic load exerted by surrounding viscous fluid flow is described. Mass conservation and momentum balance formulated on an elementary domain made of a given volume of mixture give rise to a system of coupled equations governing solid space-averaged displacement, fluid velocity and pressure provided that near-wall hydrodynamic load on each vibrating cylinder is expressed as a function of both fluid and solid space-averaged velocity fields. Then, the ability of the macroscopic model to reproduce over time an averaged flow surrounding vibrating cylinders in a large array in the context of small magnitude displacements is pointed out. Numerical solutions obtained on a two-dimensional configuration involving an array of several hundreds of cylinders subjected to an impulsional load are compared to those provided by averaged well-resolved microscopic-scale solutions. The relative error is less than 3% in terms of displacement magnitude and 5% for frequency delay. The proposed macroscopic model does not include any assumption on relative effect contributions to mechanical exchanges occurring in the full domain. Therefore it features interesting properties in terms of fluid solid interaction prediction capabilities. Moreover it contributes to a significant gain in terms of computational time and resources. Further developments are now required in order to extent the formulation to large magnitude displacements including three-dimensional effects. This could be recommended for investigations on fuel assembly vibration risk assessment in Pressure Water, Fast Breeder reactors at a whole core scale or any other large-scale mechanical system involving some kind of periodic geometry.
A Gineau, E. Longatte, D. Lucor, P. Sagaut. Macroscopic model of fluid structure interaction in cylinder arrangement using theory of mixture. Computers and Fluids, Elsevier, 2020, 202, pp.104499. ⟨10.1016/j.compfluid.2020.104499⟩. ⟨hal-03251640⟩
M. Tayyab, S. Zhao, Y. Feng, Pierre Boivin. Hybrid regularized Lattice-Boltzmann modelling of premixed and non-premixed combustion processes. Combustion and Flame, Elsevier, 2020, 211, pp.173-184. ⟨10.1016/j.combustflame.2019.09.029⟩. ⟨hal-02346556⟩ Plus de détails...
A Lattice-Boltzmann model for low-Mach reactive flows is presented, built upon our recently published model (Comb & Flame, 196, 2018). The approach is hybrid and couples a Lattice-Boltzmann solver for the resolution of mass and momentum conservation and a finite difference solver for the energy and species conservation. Having lifted the constant thermodynamic and transport properties assumptions, the model presented now fully accounts for the classical reactive flow thermodynamic closure: each component is assigned NASA coefficients for calculating its thermodynamic properties. A temperature-dependent viscosity is considered, from which are deduced thermo-diffusive properties via specification of Prandtl and component-specific Schmidt numbers. Another major improvement from our previous contribution is the derivation of an advanced collision kernel compatible of multi-component reactive flows stable in high shear flows. Validation is carried out first on premixed configurations, through simulation of the planar freely propagating flame, the growth of the associated Darrieus-Landau instability and three regimes of flame-vortex interaction. A double shear layer test case including a flow-stabilized diffusion flame is then presented and results are compared with DNS simulations, showing excellent agreement.
M. Tayyab, S. Zhao, Y. Feng, Pierre Boivin. Hybrid regularized Lattice-Boltzmann modelling of premixed and non-premixed combustion processes. Combustion and Flame, Elsevier, 2020, 211, pp.173-184. ⟨10.1016/j.combustflame.2019.09.029⟩. ⟨hal-02346556⟩
T. Cartier-Michaud, D. Galassi, Ph Ghendrih, P. Tamain, F. Schwander, et al.. A posteriori error estimate in fluid simulations of turbulent edge plasmas for magnetic fusion in tokamak using the data mining iPoPe method. Physics of Plasmas, American Institute of Physics, 2020. ⟨hal-02613800⟩ Plus de détails...
Progressing towards more reliable numerical solutions in the simulation of plasma for magnetic confinement fusion has become a critical issue for the success of the ITER operation. This requires developing rigorous and efficient methods of verification of the numerical simulations in any relevant flow regimes of the operation. The paper introduces a new formulation of the PoPe 1 method, namely the independent Projection on Proper elements method (iPoPe) to quantify the numerical error by performing a data-driven identification of the mathematical model from the simulation outputs. Based on a statistical postprocessing of the outputs database, the method provides a measure of the error by estimating the distance between the (numerical) effective and (analytical) theoretical weights of each operator implemented in the mathematical model. The efficiency of the present method is illustrated on turbulent edge plasma simulations based on a drift-reduced Braginskii fluid model in realistic magnetic geometries. Results show the effective order of the numerical method in these multiscale flow regimes as well as the values of the plasma parameters which can be safely simulated with respect to a given discretization. In this sense, the method goes one step further than the Method of Manufactured Solution (MMS 2-4), recently introduced in fusion, and provides an efficient verification procedure of the numerical simulations in any regimes, including turbulent ones that could be generalized to other scientific domains.
T. Cartier-Michaud, D. Galassi, Ph Ghendrih, P. Tamain, F. Schwander, et al.. A posteriori error estimate in fluid simulations of turbulent edge plasmas for magnetic fusion in tokamak using the data mining iPoPe method. Physics of Plasmas, American Institute of Physics, 2020. ⟨hal-02613800⟩
T. Lyubimova, A. Lepikhin, Ya Parshakova, C. Gualtieri, S. Lane, et al.. Influence of Hydrodynamic Regimes on Mixing of Waters of Confluent Rivers. Journal of Applied Mechanics and Technical Physics, Springer Verlag, 2020, 60 (7), pp.1220-1227. ⟨10.1134/S0021894419070083⟩. ⟨hal-03231839⟩ Plus de détails...
At present, a significant weakening of the intensity of transverse mixing at the confluence of large rivers, which is observed in a number of cases, is widely discussed. Since the observed features of the confluence of large watercourses are not only of research interest but also of significant economic importance associated with the characteristics of water management at these water bodies, a large number of works are devoted to their study. Water resources management requires measures for the organization of water use which can be rational only under the understanding of processes occurring in water basins. To explain the phenomenon of suppression of the transverse mixing, which is interesting and important from the point of view of ecology, a wide range of hypotheses is proposed, up to the negation of turbulence in rivers. One of the possible mechanisms for explaining the suppression of transversal mixing can be the presence of transverse circulation manifesting itself as Prandtl’s secondary flows of the second kind. The characteristic velocity of these circulation flows is very small and difficult to measure directly by instruments; however, in our opinion, they can significantly complicate the transverse mixing at the confluence. The proposed hypothesis is tested in computational experiments in the framework of the three-dimensional formulation for dimensions of a real water object at the mouth of the Vishera River where it meets the Kama. Calculations demonstrate that, at sufficiently large flow rates, the two waters practically do not mix in the horizontal direction throughout the depth over long distances from the confluence. It has been found that a two-vortex flow is formed downstream the confluence, which just attenuates the mixing; the fluid motion in the vortices is such that, near the free surface, the fluid moves from the banks to the middle of the riverbed.
T. Lyubimova, A. Lepikhin, Ya Parshakova, C. Gualtieri, S. Lane, et al.. Influence of Hydrodynamic Regimes on Mixing of Waters of Confluent Rivers. Journal of Applied Mechanics and Technical Physics, Springer Verlag, 2020, 60 (7), pp.1220-1227. ⟨10.1134/S0021894419070083⟩. ⟨hal-03231839⟩
Journal: Journal of Applied Mechanics and Technical Physics
Yongliang Feng, S. Guo, Jérôme Jacob, Pierre Sagaut. Solid wall and open boundary conditions in hybrid recursive regularized lattice Boltzmann method for compressible flows. Physics of Fluids, American Institute of Physics, 2019, 31 (12), pp.126103. ⟨10.1063/1.5129138⟩. ⟨hal-02467965⟩ Plus de détails...
Complex geometries and open boundaries have been intensively studied in the nearly incompressible lattice Boltzmann method (LBM) framework. Therefore, only few boundary conditions for the high speed fully compressible LBM have been proposed. This paper deals with the definition of efficient boundary conditions for the compressible LBM methods, with the emphasis put on the newly proposed hybrid recursive regularized D3Q19 LBM (HRR-LBM) with applications to compressible aerodynamics. The straightforward simple extrapolation-based far-field boundary conditions, the characteristic boundary conditions, and the absorbing sponge layer approach are extended and estimated in the HRR-LBM for the choice of open boundaries. Moreover, a cut-cell type approach to handle the immersed solid is proposed to model both slip and no-slip wall boundary conditions with either isothermal or adiabatic behavior. The proposed implementations are assessed considering the simulation of (i) isentropic vortex convection with subsonic to supersonic inflow and outflow conditions, (ii) two-dimensional (2D) compressible mixing layer, (iii) steady inviscid transonic flow over a National Advisory Committee for Aeronautics (NACA) 0012 airfoil, (iv) unsteady viscous transonic flow over a NACA 0012 airfoil, and (v) three-dimensional (3D) transonic flows over a German Aerospace Center (DLR) F6 full aircraft configuration.
Yongliang Feng, S. Guo, Jérôme Jacob, Pierre Sagaut. Solid wall and open boundary conditions in hybrid recursive regularized lattice Boltzmann method for compressible flows. Physics of Fluids, American Institute of Physics, 2019, 31 (12), pp.126103. ⟨10.1063/1.5129138⟩. ⟨hal-02467965⟩
S. Kahn, C. Reux, J.-F Artaud, G Aiello, J.-B Blanchard, et al.. Sensitivity analysis of fusion power plant designs using the SYCOMORE system code. Nuclear Fusion, 2019, 60 (1), pp.016015. ⟨10.1088/1741-4326/ab4879⟩. ⟨cea-02426430⟩ Plus de détails...
The next step after ITER is the demonstration of stable electricity production with a fusion reactor. Key design performances will have to be met by the corresponding power plant demonstrator (DEMO), fulfilling a large number of constraints. System codes such as SYCOMORE, by simulating all the fusion power plant subsystems , address those questions. To be able to perform design optimizations, simplified models relying on physical and technological assumptions have to be used, resulting in a large number of input parameters. As these parameters are not always exactly known, the impact of their associated uncertainties on final design performances has to be evaluated. Sensitivity methods, by measuring the relative influence of inputs on the figures of merit of the design, allow to select the dominant parameters. This information helps the search for optimal working points, guides the priority for technical improvements and finally allows selecting meaningful inputs for uncertainty propagation. A full set of sensitivity methods and their application on a ITER and a DEMO design will be presented, discussing both the statistical methods behaviors and the physical results. Plasma shape parameters (minor radius and plasma elongations) share half of the net electricity power sensitivity for the DEMO 2015 design while the toroidal magnetic field and the 95 % safety factor are responsible for 23% and 17% of the electric power sensitivity, respectively. The plasma minor radius is responsible for 45% of the pulse duration sensitivity for the DEMO 2015 design, while plasma physics parameters drive ∼ 37% of the pulse duration sensitivity.
S. Kahn, C. Reux, J.-F Artaud, G Aiello, J.-B Blanchard, et al.. Sensitivity analysis of fusion power plant designs using the SYCOMORE system code. Nuclear Fusion, 2019, 60 (1), pp.016015. ⟨10.1088/1741-4326/ab4879⟩. ⟨cea-02426430⟩
Sylvain Chateau, Julien Favier, Sébastien Poncet, Umberto d'Ortona. Why antiplectic metachronal cilia waves are optimal to transport bronchial mucus. Physical Review E , American Physical Society (APS), 2019, 100 (4), pp.042405. ⟨10.1103/PhysRevE.100.042405⟩. ⟨hal-02468006⟩ Plus de détails...
The coordinated beating of epithelial cilia in human lungs is a fascinating problem from the hydrodynamics perspective. The phase lag between neighboring cilia is able to generate collective cilia motions, known as metachronal waves. Different kinds of waves can occur, antiplectic or symplectic, depending on the direction of the wave with respect to the flow direction. It is shown here, using a coupled lattice Boltzmann-immersed boundary solver, that the key mechanism responsible for their transport efficiency is a blowing-suction effect that displaces the interface between the periciliary liquid and the mucus phase. The contribution of this mechanism on the average flow generated by the cilia is compared to the contribution of the lubrication effect. The results reveal that the interface displacement is the main mechanism responsible for the better efficiency of antiplectic metachronal waves over symplectic ones to transport bronchial mucus. The conclusions drawn here can be extended to any two-layer fluid configuration having different viscosities, and put into motion by cilia-shaped or comb-plate structures, having a back-and-forth motion with phase lags.
Sylvain Chateau, Julien Favier, Sébastien Poncet, Umberto d'Ortona. Why antiplectic metachronal cilia waves are optimal to transport bronchial mucus. Physical Review E , American Physical Society (APS), 2019, 100 (4), pp.042405. ⟨10.1103/PhysRevE.100.042405⟩. ⟨hal-02468006⟩
H. Anand, R.A. Pitts, P.C. de Vries, J.A. Snipes, F. Nespoli, et al.. Experimental implementation of a real-time power flux estimator for the ITER first wall on the TCV tokamak. Fusion Engineering and Design, Elsevier, 2019, 147, pp.111242. ⟨10.1016/j.fusengdes.2019.111242⟩. ⟨hal-02468015⟩ Plus de détails...
A control-oriented approach to the monitoring of wall power flux densities on ITER has been successfully developed. It is based on real-time equilibrium reconstruction in 2-D which is then used to describe the deposited heat flux as a poloidal flux function with user specified parameters for the power exhausted into the scrape-off layer (SOL) and the SOL heat flux width. To account for the real 3-D geometry of the plasma-facing components (PFC), appropriate weighting factors are derived from magnetic field line tracing in 3-D. Integration of the 3-D effect is performed with a new GUI-based software environment, SMITER, incorporating a field line tracer and permitting import and meshing of PFC CAD models. The paper discusses the experimental demonstration of the model-based wall heat flux algorithm on the TCV tokamak, reporting on the benchmarking of the new code package, SMITER against infra-red camera heat flux measurements and the derivation of the component shaping weighting factors. A comparison of the real-time estimation of the peak power flux and its spatial location against the off-line infra-red measurement for limiter plasma configurations is presented.
H. Anand, R.A. Pitts, P.C. de Vries, J.A. Snipes, F. Nespoli, et al.. Experimental implementation of a real-time power flux estimator for the ITER first wall on the TCV tokamak. Fusion Engineering and Design, Elsevier, 2019, 147, pp.111242. ⟨10.1016/j.fusengdes.2019.111242⟩. ⟨hal-02468015⟩
R. Mao, N. Fedorczak, G. Ciraolo, H. Bufferand, Y. Marandet, et al.. Impact of an alternative divertor configuration on plasma detachment: pure deuterium simulations using the SOLEDGE2D-EIRENE edge transport code for HL-2M scenarios. Nuclear Fusion, IOP Publishing, 2019, 59 (10), pp.106019. ⟨10.1088/1741-4326/ab3005⟩. ⟨hal-02468022⟩ Plus de détails...
The SOLEDGE-EIRENE edge plasma code provides solutions for particle and energy transport in the plasma edge within complex and realistic 2D geometries (Bufferand et al 2015 Nucl. Fusion 55 053025). In this work, divertor detachment is simulated on HL-2M alternative magnetic configurations in pure deuterium plasma. Starting from a typical HL-2M low single-null configuration, the snowflake plus (SF+) and snowflake minus (SF-) configurations have then been investigated. Detachment of the outer target is studied in these configurations during plasma density ramps controlled by a fueling source, with constant input power and constant radial transport coefficients. Some typical characteristics of detachment, like threshold, depth and upstream window of detachment are investigated. In the three geometries, detachment onset and evolution with upstream plasma density is characterized by the gradual displacement of a radiation front from the outer target to the main X-point, as observed in experiments. It is found that, whatever the detachment in terms of particle, momentum or power dissipation, the detachment threshold is dominated primarily by the geometrical structure of the divertor plate and does not exhibit dependence on the magnetic configuration of the diverted plasma volume. In particular, the parallel connection length in the divertor is not found to affect the detachment threshold, in contrast with simple expectations from the two-point model, but in agreement with experimental findings.
R. Mao, N. Fedorczak, G. Ciraolo, H. Bufferand, Y. Marandet, et al.. Impact of an alternative divertor configuration on plasma detachment: pure deuterium simulations using the SOLEDGE2D-EIRENE edge transport code for HL-2M scenarios. Nuclear Fusion, IOP Publishing, 2019, 59 (10), pp.106019. ⟨10.1088/1741-4326/ab3005⟩. ⟨hal-02468022⟩
Simon Gsell, Umberto d'Ortona, Julien Favier. Explicit and viscosity-independent immersed-boundary scheme for the lattice Boltzmann method. Physical Review E , American Physical Society (APS), 2019, 100 (3), ⟨10.1103/PhysRevE.100.033306⟩. ⟨hal-02339475⟩ Plus de détails...
Viscosity independence of lattice-Boltzmann methods is a crucial issue to ensure the physical relevancy of the predicted macroscopic flows over large ranges of physical parameters. The immersed-boundary (IB) method, a powerful tool that allows one to immerse arbitrary-shaped, moving, and deformable bodies in the flow, suffers from a boundary-slip error that increases as a function of the fluid viscosity, substantially limiting its range of application. In addition, low fluid viscosities may result in spurious oscillations of the macroscopic quantities in the vicinity of the immersed boundary. In this work, it is shown mathematically that the standard IB method is indeed not able to reproduce the scaling properties of the macroscopic solution, leading to a viscosity-related error on the computed IB force. The analysis allows us to propose a simple correction of the IB scheme that is local, straightforward and does not involve additional computational time. The derived method is implemented in a two-relaxation-time D2Q9 lattice-Boltzmann solver, applied to several physical configurations, namely, the Poiseuille flow, the flow around a cylinder towed in still fluid, and the flow around a cylinder oscillating in still fluid, and compared to a noncorrected immersed-boundary method. The proposed correction leads to a major improvement of the viscosity independence of the solver over a wide range of relaxation times (from 0.5001 to 50), including the correction of the boundary-slip error and the suppression of the spurious oscillations. This improvement may considerably extend the range of application of the IB lattice-Boltzmann method, in particular providing a robust tool for the numerical analysis of physical problems involving fluids of varying viscosity interacting with solid geometries.
Simon Gsell, Umberto d'Ortona, Julien Favier. Explicit and viscosity-independent immersed-boundary scheme for the lattice Boltzmann method. Physical Review E , American Physical Society (APS), 2019, 100 (3), ⟨10.1103/PhysRevE.100.033306⟩. ⟨hal-02339475⟩
F. Nespoli, P. Tamain, N. Fedorczak, G. Ciraolo, D. Galassi, et al.. 3D structure and dynamics of filaments in turbulence simulations of WEST diverted plasmas. Nuclear Fusion, IOP Publishing, 2019. ⟨hal-02364554⟩ Plus de détails...
We study the effect of a diverted magnetic geometry on edge plasma turbulence, focusing on the three-dimensional structure and dynamics of filaments, also called blobs, in simulations of the WEST tokamak, featuring a primary and secondary X-point. For this purpose, in addition to classical analysis techniques, we apply here a novel fully 3D Blob Recognition And Tracking (BRAT) algorithm, allowing for the first time to resolve the three-dimensional structure and dynamics of the blobs in a turbulent 3D plasma featuring a realistic magnetic geometry. The results are tested against existing theoretical scalings of blob velocity [Myra et al, Physics of Plasmas 2006]. The complementary analysis of the 3D structure of the filaments shows how they disconnect from the divertor plate in the vicinity of the X-points, leading to a transition from a sheath-connected regime to the ideal-interchange one. Furthermore, the numerical results show non-negligible effects of the turbulent background plasma: approximately half of the detected filaments are involved in mutual interactions, eventually resulting in negative radial velocities, and a fraction of the filaments is generated by turbulence directly below the X-point.
F. Nespoli, P. Tamain, N. Fedorczak, G. Ciraolo, D. Galassi, et al.. 3D structure and dynamics of filaments in turbulence simulations of WEST diverted plasmas. Nuclear Fusion, IOP Publishing, 2019. ⟨hal-02364554⟩
Yongliang Feng, Pierre Boivin, Jérome Jacob, Pierre Sagaut. Hybrid recursive regularized lattice Boltzmann simulation of humid air with application to meteorological flows. Physical Review E , American Physical Society (APS), 2019. ⟨hal-02265484⟩ Plus de détails...
An extended version of the hybrid recursive regularized Lattice-Boltzmann model which incorporates external force is developed to simulate humid air flows with phase change mechanisms under the Boussinesq approximation. Mass and momentum conservation equations are solved by a regu-larized lattice Boltzmann approach well suited for high Reynolds number flows, whereas the energy and humidity related equations are solved by a finite volume approach. Two options are investigated to account for cloud formation in atmospheric flow simulations. The first option considers a single conservation equation for total water and an appropriate invariant variable of temperature. In the other approach, liquid and vapor are considered via two separated equations, and phase transition is accounted for via a relaxation procedure. The obtained models are then systematically validated on four well-established benchmark problems including a double diffusive Rayleigh Bénard convection of humid air, 2D and 3D thermal moist rising bubble under convective atmospheric environment as well as a shallow cumulus convection in framework of large-eddy simulation.
Yongliang Feng, Pierre Boivin, Jérome Jacob, Pierre Sagaut. Hybrid recursive regularized lattice Boltzmann simulation of humid air with application to meteorological flows. Physical Review E , American Physical Society (APS), 2019. ⟨hal-02265484⟩
Yongliang Feng, Pierre Boivin, Jérome Jacob, Pierre Sagaut. Hybrid recursive regularized lattice Boltzmann simulation of humid air with application to meteorological flows. Physical Review E , American Physical Society (APS), 2019. ⟨hal-02265484⟩ Plus de détails...
An extended version of the hybrid recursive regularized Lattice-Boltzmann model which incorporates external force is developed to simulate humid air flows with phase change mechanisms under the Boussinesq approximation. Mass and momentum conservation equations are solved by a regu-larized lattice Boltzmann approach well suited for high Reynolds number flows, whereas the energy and humidity related equations are solved by a finite volume approach. Two options are investigated to account for cloud formation in atmospheric flow simulations. The first option considers a single conservation equation for total water and an appropriate invariant variable of temperature. In the other approach, liquid and vapor are considered via two separated equations, and phase transition is accounted for via a relaxation procedure. The obtained models are then systematically validated on four well-established benchmark problems including a double diffusive Rayleigh Bénard convection of humid air, 2D and 3D thermal moist rising bubble under convective atmospheric environment as well as a shallow cumulus convection in framework of large-eddy simulation.
Yongliang Feng, Pierre Boivin, Jérome Jacob, Pierre Sagaut. Hybrid recursive regularized lattice Boltzmann simulation of humid air with application to meteorological flows. Physical Review E , American Physical Society (APS), 2019. ⟨hal-02265484⟩
G. Ciraolo, A. Thin, H. Bufferand, J. Bucalossi, N. Fedorczak, et al.. First modeling of strongly radiating WEST plasmas with SOLEDGE-EIRENE. Nuclear Materials and Energy, Elsevier, 2019, 20, pp.100685. ⟨10.1016/j.nme.2019.100685⟩. ⟨hal-02468035⟩ Plus de détails...
We present first results of SOLEDGE-EIRENE modeling a strongly radiating plasma in the WEST tokamak. Using measurements from a reciprocating Langmuir probe we have determined the SOLEDGE input parameters, i.e. separatrix density at outboard midplane and radial transport coefficients typical of L-mode plasma. We have performed deuterium plasma simulations with presence of oxygen, injected from the core boundary into the simulation domain. The comparison between the radiated power measured from the bolometry in the divertor region and the one computed from SOLEDGE simulations seems to indicate a concentration of oxygen of about 2%. Moreover we have obtained good agreement between simulation results and experimental measurements on electron density and electron temperature profiles at the outer strike point. First qualitative analysis of spectroscopic synthetic diagnostic on D-alpha signals is also presented.
G. Ciraolo, A. Thin, H. Bufferand, J. Bucalossi, N. Fedorczak, et al.. First modeling of strongly radiating WEST plasmas with SOLEDGE-EIRENE. Nuclear Materials and Energy, Elsevier, 2019, 20, pp.100685. ⟨10.1016/j.nme.2019.100685⟩. ⟨hal-02468035⟩
G. Farag, Pierre Boivin, P. Sagaut. Interaction of two-dimensional spots with a heat releasing/absorbing shock wave: linear interaction approximation results. Journal of Fluid Mechanics, Cambridge University Press (CUP), 2019, 871, pp.865-895. ⟨10.1017/jfm.2019.324⟩. ⟨hal-02142649⟩ Plus de détails...
The canonical interaction between a two-dimensional weak Gaussian disturbance (en-tropy spot, density spot, weak vortex) with an exothermic/endothermic planar shock wave is studied via the Linear Interaction Approximation. To this end, a unified framework based on an extended Kovasznay decomposition that simultaneously accounts for non-acoustic density disturbances along with a poloidal-toroidal splitting of the vorticity mode and for heat-release is proposed. An extended version of Chu's definition for the energy of disturbances in compressible flows encompassing multi-component mixtures of gases is also proposed. This new definition precludes spurious non-normal phenomena when computing the total energy of extended Kovasznay modes. Detailed results are provided for three cases, along with fully general expressions for mixed solutions that combine incoming vortical, entropy and density disturbances.
G. Farag, Pierre Boivin, P. Sagaut. Interaction of two-dimensional spots with a heat releasing/absorbing shock wave: linear interaction approximation results. Journal of Fluid Mechanics, Cambridge University Press (CUP), 2019, 871, pp.865-895. ⟨10.1017/jfm.2019.324⟩. ⟨hal-02142649⟩
R Mao, N. Fedorczak, G. Ciraolo, H. Bufferand, Y. Marandet, et al.. Impact of alternative divertor configuration on plasma detachment: pure Deuterium simulations with SolEdge2D-EIRENE edge transport code for HL-2M scenario. Nuclear Fusion, 2019. ⟨hal-02370418⟩ Plus de détails...
The SOLEDGE-EIRENE edge plasma code provides solutions for particle & energy transport in the plasma edge within complex and realistic 2D geometries [1]. In this work, divertor detachment is simulated on the HL-2M alternative magnetic configurations in pure Deuterium plasma. Starting from typical HL-2M low single-null (SN) configuration, the snowflake plus (SF+) and snowflake minus (SF-) configurations have been investigated. Detachment of the outer target is studied in these configurations during plasma density ramps controlled by a fueling source, at constant input power and constant radial transport coefficients. Some typical characteristics of detachment, like threshold, depth and upstream window of detachment are investigated. In the three geometries, detachment onset and evolution with upstream plasma density is characterized by the gradual displacement of a radiation front from the outer target to the main X-point, as observed in experiments. It is found that, whatever the detachment in terms of particle, momentum or power dissipation, the detachment threshold is dominated primarily by the geometrical structure of divertor plate and it does not exhibit dependence on the magnetic configuration of the diverted plasma volume. In particular, the parallel connection length in the divertor is not found to affect the detachment threshold, in contrast with simple expectations from the 2-point model, but in agreement with experimental findings.
R Mao, N. Fedorczak, G. Ciraolo, H. Bufferand, Y. Marandet, et al.. Impact of alternative divertor configuration on plasma detachment: pure Deuterium simulations with SolEdge2D-EIRENE edge transport code for HL-2M scenario. Nuclear Fusion, 2019. ⟨hal-02370418⟩
Isabelle Cheylan, Guillaume Fritz, Denis Ricot, Pierre Sagaut. Shape Optimization Using the Adjoint Lattice Boltzmann Method for Aerodynamic Applications. AIAA Journal, American Institute of Aeronautics and Astronautics, 2019, 57 (7), pp.2758-2773. ⟨10.2514/1.J057955⟩. ⟨hal-02468051⟩ Plus de détails...
The present work focuses on shape optimization using the lattice Boltzmann method applied to aerodynamic cases. The adjoint method is used to calculate the sensitivities of the drag force with respect to the shape of an object. The main advantage of the adjoint method is its cost, because it is independent from the number of optimization parameters. The approach used consists in developing a continuous adjoint of the primal problem discretized in space, time, and velocities. An adjoint lattice Boltzmann equation is thus found, which is solved using the same algorithms as in the primal problem. The test cases investigate new features compared to what exists in the literature, such as the derivation of the grid refinement models in the primal problem to obtain their adjoint counterparts, but also the derivation of a double-relaxation-time algorithm and the Ginzburg et al. interpolation at the wall ("Two-Relaxation-Time Lattice Boltzmann Scheme: About Parametrization, Velocity, Pressure and Mixed Boundary Conditions," Communications in Computational Physics, Vol. 3, No. 2, 2008, pp. 427-478). Regarding the unsteadiness of the primal problem, two methods differing in accuracy and computational effort are compared using a two-dimensional unsteady case. Finally, this first-of-a-kind adjoint solver is applied to a large-scale threedimensional turbulent case (the flow of air around a car at a speed of 130 km/h), which shows its usefulness in the industry.
Isabelle Cheylan, Guillaume Fritz, Denis Ricot, Pierre Sagaut. Shape Optimization Using the Adjoint Lattice Boltzmann Method for Aerodynamic Applications. AIAA Journal, American Institute of Aeronautics and Astronautics, 2019, 57 (7), pp.2758-2773. ⟨10.2514/1.J057955⟩. ⟨hal-02468051⟩
Isabelle Cheylan, Guillaume Fritz, Denis Ricot, Pierre Sagaut. Shape Optimization Using the Adjoint Lattice Boltzmann Method for Aerodynamic Applications. AIAA Journal, American Institute of Aeronautics and Astronautics, 2019, 57 (7), pp.2758-2773. ⟨10.2514/1.J057955⟩. ⟨hal-02468051⟩ Plus de détails...
The present work focuses on shape optimization using the lattice Boltzmann method applied to aerodynamic cases. The adjoint method is used to calculate the sensitivities of the drag force with respect to the shape of an object. The main advantage of the adjoint method is its cost, because it is independent from the number of optimization parameters. The approach used consists in developing a continuous adjoint of the primal problem discretized in space, time, and velocities. An adjoint lattice Boltzmann equation is thus found, which is solved using the same algorithms as in the primal problem. The test cases investigate new features compared to what exists in the literature, such as the derivation of the grid refinement models in the primal problem to obtain their adjoint counterparts, but also the derivation of a double-relaxation-time algorithm and the Ginzburg et al. interpolation at the wall ("Two-Relaxation-Time Lattice Boltzmann Scheme: About Parametrization, Velocity, Pressure and Mixed Boundary Conditions," Communications in Computational Physics, Vol. 3, No. 2, 2008, pp. 427-478). Regarding the unsteadiness of the primal problem, two methods differing in accuracy and computational effort are compared using a two-dimensional unsteady case. Finally, this first-of-a-kind adjoint solver is applied to a large-scale threedimensional turbulent case (the flow of air around a car at a speed of 130 km/h), which shows its usefulness in the industry.
Isabelle Cheylan, Guillaume Fritz, Denis Ricot, Pierre Sagaut. Shape Optimization Using the Adjoint Lattice Boltzmann Method for Aerodynamic Applications. AIAA Journal, American Institute of Aeronautics and Astronautics, 2019, 57 (7), pp.2758-2773. ⟨10.2514/1.J057955⟩. ⟨hal-02468051⟩
Lars Davidson, Christophe Friess. A new formulation of f k for the PANS model. Journal of Turbulence, Taylor & Francis, 2019, 20 (5), pp.322-336. ⟨10.1080/14685248.2019.1641605⟩. ⟨hal-02354566⟩ Plus de détails...
Lars Davidson, Christophe Friess. A new formulation of f k for the PANS model. Journal of Turbulence, Taylor & Francis, 2019, 20 (5), pp.322-336. ⟨10.1080/14685248.2019.1641605⟩. ⟨hal-02354566⟩
E. Yim, P. Meliga, F. Gallaire. Self-consistent triple decomposition of the turbulent flow over a backward-facing step under finite amplitude harmonic forcing. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Royal Society, The, 2019, 475 (2225), pp.20190018. ⟨10.1098/rspa.2019.0018⟩. ⟨hal-02177032⟩ Plus de détails...
We investigate the saturation of harmonically forced disturbances in the turbulent flow over a backward-facing step subjected to a finite amplitude forcing. The analysis relies on a triple decomposition of the unsteady flow into mean, coherent and incoherent components. The coherent-incoherent interaction is lumped into a Reynolds averaged Navier-Stokes (RANS) eddy viscosity model, and the mean-coherent interaction is analysed via a semi-linear resolvent analysis building on the laminar approach by Mantic-Lugo & Gallaire (2016 J. Fluid Mech. 793, 777-797. (doi:10.1017/jfm.2016.109)). This provides a self-consistent modelling of the interaction between all three components, in the sense that the coherent perturbation structures selected by the resolvent analysis are those whose Reynolds stresses force the mean flow in such a way that the mean flow generates exactly the aforementioned perturbations, while also accounting for the effect of the incoherent scale. The model does not require any input from numerical or experimental data, and accurately predicts the saturation of the forced coherent disturbances, as established from comparison to time-averages of unsteady RANS simulation data.
E. Yim, P. Meliga, F. Gallaire. Self-consistent triple decomposition of the turbulent flow over a backward-facing step under finite amplitude harmonic forcing. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Royal Society, The, 2019, 475 (2225), pp.20190018. ⟨10.1098/rspa.2019.0018⟩. ⟨hal-02177032⟩
Journal: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Julien Denis, J. Bucalossi, G. Ciraolo, Etienne Hodille, B. Pégourié, et al.. Dynamic modelling of local fuel inventory and desorption in the whole tokamak vacuum vessel for auto-consistent plasma-wall interaction simulations. Nuclear Materials and Energy, Elsevier, 2019, 19, pp.550-557. ⟨10.1016/j.nme.2019.03.019⟩. ⟨hal-02902060⟩ Plus de détails...
An extension of the SolEdge2D-EIRENE code package, named D-WEE, has been developed to add the dynamics of thermal desorption of hydrogen isotopes from the surface of plasma facing materials. To achieve this purpose, D-WEE models hydrogen isotopes implantation, transport and retention in those materials. Before launching auto-consistent simulation (with feedback of D-WEE on SolEdge2D-EIRENE), D-WEE has to be initialised to ensure a realistic wall behaviour in terms of dynamics (pumping or fuelling areas) and fuel content. A methodology based on modelling is introduced to perform such initialisation. A synthetic plasma pulse is built from consecutive SolEdge2D-EIRENE simulations. This synthetic pulse is used as a plasma background for the D-WEE module. A sequence of plasma pulses is simulated with D-WEE to model a tokamak operation. This simulation enables to extract at a desired time during a pulse the local fuel inventory and the local desorption flux density which could be used as initial condition for coupled plasma-wall simulations. To assess the relevance of the dynamic retention behaviour obtained in the simulation, a confrontation to post-pulse experimental pressure measurement is performed. Such confrontation reveals a qualitative agreement between the temporal pressure drop obtained in the simulation and the one observed experimentally. The simulated dynamic retention during the consecutive pulses is also studied.
Julien Denis, J. Bucalossi, G. Ciraolo, Etienne Hodille, B. Pégourié, et al.. Dynamic modelling of local fuel inventory and desorption in the whole tokamak vacuum vessel for auto-consistent plasma-wall interaction simulations. Nuclear Materials and Energy, Elsevier, 2019, 19, pp.550-557. ⟨10.1016/j.nme.2019.03.019⟩. ⟨hal-02902060⟩
Giorgio Giorgiani, H. Bufferand, G. Ciraolo, Eric Serre, P. Tamain. A magnetic-field independent approach for strongly anisotropic equations arising plasma-edge transport simulations. Nuclear Materials and Energy, Elsevier, 2019, 19, pp.340-345. ⟨10.1016/j.nme.2019.03.002⟩. ⟨hal-02177048⟩ Plus de détails...
A [Summary] The control of the power exhaust in tokamaks is still an open issue for the future fusion operations. The heat loads on divertor and limiter PFCs is largely determined by the physics of the Scrape-Off Layer (SOL), and therefore it depends mainly on the geometry of the magnetic surfaces and on the geometry of wall components. A better characterization of the heat exhaust mechanisms requires therefore to improve the capabilities of the transport codes in terms of geometrical description of the wall components and in terms of the description of the magnetic geometry. The possibility of dealing with evolving magnetic configurations becomes also critical: during start-up or control operations, for example, the evolution of particles and heat fluxes is little known, although being critical for the safety of the machine. Hence, among the new capabilities of future transport codes will be the possibility of accurately describe the reactor chamber, and the flexibility with respect the magnetic configuration. In particular, avoiding expensive re-meshing of the computational domain in case of evolving equilibrium is mandatory. In order to fulfill these requirements, in this work a fluid solver based on non-aligned discretization is used to solve the plasma-edge transport equations for density, momentum and energies. Preliminary tests on non-structured meshes and realistic geometries/physical parameters show the pertinency of this novel approach.
Giorgio Giorgiani, H. Bufferand, G. Ciraolo, Eric Serre, P. Tamain. A magnetic-field independent approach for strongly anisotropic equations arising plasma-edge transport simulations. Nuclear Materials and Energy, Elsevier, 2019, 19, pp.340-345. ⟨10.1016/j.nme.2019.03.002⟩. ⟨hal-02177048⟩
Uwe Ehrenstein. Thrust and drag scaling of a rigid low-aspect-ratio pitching plate. Journal of Fluids and Structures, Elsevier, 2019, 87, pp.39-57. ⟨10.1016/j.jfluidstructs.2019.03.013⟩. ⟨hal-02090856⟩ Plus de détails...
Uwe Ehrenstein. Thrust and drag scaling of a rigid low-aspect-ratio pitching plate. Journal of Fluids and Structures, Elsevier, 2019, 87, pp.39-57. ⟨10.1016/j.jfluidstructs.2019.03.013⟩. ⟨hal-02090856⟩
S. Baschetti, H. Bufferand, G. Ciraolo, N. Fedorczak, P. Ghendrih, et al.. A κ − ε model for plasma anomalous transport in tokamaks: closure via the scaling of the global confinement. Nuclear Materials and Energy, Elsevier, 2019, 19, pp.200-204. ⟨10.1016/j.nme.2019.02.032⟩. ⟨hal-02177039⟩ Plus de détails...
A reduced model for radial anomalous transport of plasma in tokamaks, inspired by the Reynolds-Averaged Navier-Stokes (RANS) approach, is presented assuming diffusion as governing mechanism. In order to self-consistently calculate transport coefficients, an empirical equation is built for the turbulent kinetic energy and the system is closed via the scaling law of global confinement. In such way the SOL width appears to recover experimental dependencies with respect to machine parameters and interestingly, when the model is implemented in a 2D transport code for a realistic study-case, mean fields retrieve some features already observed in 1st-principle turbulent codes.
S. Baschetti, H. Bufferand, G. Ciraolo, N. Fedorczak, P. Ghendrih, et al.. A κ − ε model for plasma anomalous transport in tokamaks: closure via the scaling of the global confinement. Nuclear Materials and Energy, Elsevier, 2019, 19, pp.200-204. ⟨10.1016/j.nme.2019.02.032⟩. ⟨hal-02177039⟩
Pierre Magnico. Electro-Kinetic Instability in a Laminar Boundary Layer Next to an Ion Exchange Membrane. International Journal of Molecular Sciences, MDPI, 2019, 20 (10), pp.2393. ⟨10.3390/ijms20102393⟩. ⟨hal-02177052⟩ Plus de détails...
The electro-kinetic instability in a pressure driven shear flow near an ion exchange membrane is considered. The electrochemical system, through which an electrical potential drop is applied, consists in a polarization layer in contact with the membrane and a bulk. The numerical investigation contained two aspects: analysis of the instability modes and description of the Lagrangian transport of fluid and ions. Regarding the first aspect, the modes were analyzed as a function of the potential drop. The analysis revealed how the spatial distribution of forces controls the dynamics of vortex association and dissociation. In particular, the birth of a counter-clockwise vortex between two clockwise vortices, and the initiation of clusters constituting one or two envelopes wrapping a vortex group, were examined. In regards to the second aspect, the trajectories were computed with the fourth order Runge Kutta scheme for the time integration and with the biquadratric upstream scheme for the spatial and time interpolation of the fluid velocity and the ion flux. The results for the periodic mode showed two kinds of trajectories: the trochoidal motion and the longitudinal one coupled with a periodic transverse motion. For the aperiodic modes, other mechanisms appeared, such as ejection from the mixing layer, trapping by a growing vortex or merging vortices. The analysis of the local velocity field, the vortices' shape, the spatial distribution of the forces and the ion flux components explained these trajectories.
Pierre Magnico. Electro-Kinetic Instability in a Laminar Boundary Layer Next to an Ion Exchange Membrane. International Journal of Molecular Sciences, MDPI, 2019, 20 (10), pp.2393. ⟨10.3390/ijms20102393⟩. ⟨hal-02177052⟩
Journal: International Journal of Molecular Sciences
V.S. Neverov, A.B. Kukushkin, U. Kruezi, M.F. Stamp, H. Weisen, et al.. Determination of isotope ratio in the divertor of JET-ILW by high-resolution H α spectroscopy: H–D experiment and implications for D–T experiment. Nuclear Fusion, IOP Publishing, 2019, 59 (4), pp.046011. ⟨10.1088/1741-4326/ab0000⟩. ⟨hal-02177120⟩ Plus de détails...
The data of the H alpha high-resolution spectroscopy, collected on the multiple lines of sight, which cover the entire divertor space in poloidal cross-section, during the recent hydrogen-deuterium experiments in JET-ILW (ITER-like wall), are processed. A strong spatial inhomogeneity of the hydrogen concentration, H/(H + D), in divertor is found in many pulses. Namely, the H/(H + D) ratio may be lower in the inner divertor than that in the outer divertor by the values of 0.15-0.35, depending on the conditions of gas puffing and plasma heating. This effect suggests the necessity of spatially-resolved measurements of isotope ratio in the divertor in the upcoming deuterium-tritium experiments. Also, separation of the overlapped T alpha and D alpha spectral lines is shown to be a challenging task especially when the local Doppler-broadened (Gaussian) line shapes are noticeably distorted by the net inward flux of fast non-Maxwellian neutral atoms. We use the respective, formerly developed model of an asymmetric spectral line shape, while analysing the data of the first deuterium-tritium experiment in JET-C (carbon wall), and test the model via comparing the isotope ratio results with another diagnostic's measurements. This model is shown to increase the accuracy of tritium concentration measurements in the divertor.
V.S. Neverov, A.B. Kukushkin, U. Kruezi, M.F. Stamp, H. Weisen, et al.. Determination of isotope ratio in the divertor of JET-ILW by high-resolution H α spectroscopy: H–D experiment and implications for D–T experiment. Nuclear Fusion, IOP Publishing, 2019, 59 (4), pp.046011. ⟨10.1088/1741-4326/ab0000⟩. ⟨hal-02177120⟩
P. Ström, P. Petersson, M. Rubel, E. Fortuna-Zaleśna, A. Widdowson, et al.. Analysis of deposited layers with deuterium and impurity elements on samples from the divertor of JET with ITER-like wall. Journal of Nuclear Materials, Elsevier, 2019, 516, pp.202-213. ⟨10.1016/j.jnucmat.2018.11.027⟩. ⟨hal-02177126⟩ Plus de détails...
Inconel-600 blocks and stainless steel covers for quartz microbalance crystals from remote corners in the JET-ILW divertor were studied with time-of-flight elastic recoil detection analysis and nuclear reaction analysis to obtain information about the areal densities and depth profiles of elements present in deposited material layers. Surface morphology and the composition of dust particles were examined with scanning electron microscopy and energy-dispersive X-ray spectroscopy. The analysed components were present in JET during three ITER-like wall campaigns between 2010 and 2017. Deposited layers had a stratified structure, primarily made up of beryllium, carbon and oxygen with varying atomic fractions of deuterium, up to more than 20%. The range of carbon transport from the ribs of the divertor carrier was limited to a few centimeters, and carbon/deuterium co-deposition was indicated on the Inconel blocks. High atomic fractions of deuterium were also found in almost carbon-free layers on the quartz microbalance covers. Layer thicknesses up to more than 1 mu m were indicated, but typical values were on the order of a few hundred nm. Chromium, iron and nickel fractions were less than or around 1% at layer surfaces while increasing close to the layer-substrate interface. The tungsten fraction depended on the proximity of the plasma strike point to the divertor corners. Particles of tungsten, molybdenum and copper with sizes less than or around 1 mu m were found. Nitrogen, argon and neon were present after plasma edge cooling and disruption mitigation. Oxygen-18 was found on component surfaces after injection, indicating in-vessel oxidation. Compensation of elastic recoil detection data for detection efficiency and ion-induced release of deuterium during the measurement gave quantitative agreement with nuclear reaction analysis, which strengthens the validity of the results.
P. Ström, P. Petersson, M. Rubel, E. Fortuna-Zaleśna, A. Widdowson, et al.. Analysis of deposited layers with deuterium and impurity elements on samples from the divertor of JET with ITER-like wall. Journal of Nuclear Materials, Elsevier, 2019, 516, pp.202-213. ⟨10.1016/j.jnucmat.2018.11.027⟩. ⟨hal-02177126⟩
Davide Galassi, Guido Ciraolo, Patrick Tamain, Hugo Bufferand, Philippe Ghendrih, et al.. Tokamak Edge Plasma Turbulence Interaction with Magnetic X-Point in 3D Global Simulations. Fluids, MDPI, 2019, 4 (1), pp.50. ⟨10.3390/fluids4010050⟩. ⟨hal-02176982⟩ Plus de détails...
Turbulence in the edge plasma of a tokamak is a key actor in the determination of the confinement properties. The divertor configuration seems to be beneficial for confinement, suggesting an effect on turbulence of the particular magnetic geometry introduced by the X-point. Simulations with the 3D fluid turbulence code TOKAM3X are performed here to evaluate the impact of a diverted configuration on turbulence in the edge plasma, in an isothermal framework. The presence of the X-point is found, locally, to affect both the shape of turbulent structures and the amplitude of fluctuations, in qualitative agreement with recent experimental observations. In particular, a quiescent region is found in the divertor scrape-off layer (SOL), close to the separatrix. Globally, a mild transport barrier spontaneously forms in the closed flux surfaces region near the separatrix, differently from simulations in limiter configuration. The effect of turbulence-driven Reynolds stress on the formation of the barrier is found to be weak by dedicated simulations, while turbulence damping around the X-point seems to globally reduce turbulent transport on the whole flux surface. The magnetic shear is thus pointed out as a possible element that contributes to the formation of edge transport barriers.
Davide Galassi, Guido Ciraolo, Patrick Tamain, Hugo Bufferand, Philippe Ghendrih, et al.. Tokamak Edge Plasma Turbulence Interaction with Magnetic X-Point in 3D Global Simulations. Fluids, MDPI, 2019, 4 (1), pp.50. ⟨10.3390/fluids4010050⟩. ⟨hal-02176982⟩
Marco Martins Afonso, Philippe Meliga, Eric Serre. Optimal Transient Growth in an Incompressible Flow past a Backward-Slanted Step. Fluids, MDPI, 2019, 4 (1), pp.33. ⟨10.3390/fluids4010033⟩. ⟨hal-02176963⟩ Plus de détails...
With the aim of providing a first step in the quest for a reduction of the aerodynamic drag on the rear-end of a car, we study the phenomena of separation and reattachment of an incompressible flow by focusing on a specific aerodynamic geometry, namely a backward-slanted step at 25 circle of inclination. The ensuing recirculation bubble provides the basis for an analytical and numerical investigation of streamwise-streak generation, lift-up effect, and turbulent-wake and Kelvin-Helmholtz instabilities. A linear stability analysis is performed, and an optimal control problem with a steady volumic forcing is tackled by means of a variational formulation, adjoint methods, penalization schemes, and an orthogonalization algorithm. Dealing with the transient growth of spanwise-periodic perturbations, and inspired by the need of physically-realizable disturbances, we finally provide a procedure attaining a kinetic-energy maximal gain on the order of 106, with respect to the power introduced by the external forcing.
Marco Martins Afonso, Philippe Meliga, Eric Serre. Optimal Transient Growth in an Incompressible Flow past a Backward-Slanted Step. Fluids, MDPI, 2019, 4 (1), pp.33. ⟨10.3390/fluids4010033⟩. ⟨hal-02176963⟩
Gauthier Wissocq, Pierre Sagaut, Jean-François Boussuge. An extended spectral analysis of the lattice Boltzmann method: modal interactions and stability issues. Journal of Computational Physics, Elsevier, 2019, 380, pp.311-333. ⟨10.1016/j.jcp.2018.12.015⟩. ⟨hal-02176969⟩ Plus de détails...
An extension of the von Neumann linear analysis is proposed for the study of the discrete-velocity Boltzmann equation (DVBE) and the lattice Boltzmann (LB) scheme. While the standard technique is restricted to the investigation of the spectral radius and the dissipation and dispersion properties, a new focus is put here on the information carried by the modes. The technique consists in the computation of the moments of the eigenvectors and their projection onto the physical waves expected by the continuous linearized Navier-Stokes (NS) equations. The method is illustrated thanks to some simulations with the BGK (Bhatnagar-Gross-Krook) collision operator on the D2Q9 and D2V17 lattices. The present analysis reveals the existence of two kinds of modes: non-observable modes that do not carry any macroscopic information and observable modes. The latter may carry either a physical wave expected by the NS equations, or an unphysical information. Further investigation of modal interactions highlights a phenomenon called curve veering occurring between two observable modes: a swap of eigenvectors and dissipation rate is observed between the eigencurves. Increasing the Mach number of the mean flow yields an eigenvalue collision at the origin of numerical instabilities of the BGK model, arising from the error in the time and space discretization of the DVBE. (C) 2019 Elsevier Inc. All rights reserved.
Gauthier Wissocq, Pierre Sagaut, Jean-François Boussuge. An extended spectral analysis of the lattice Boltzmann method: modal interactions and stability issues. Journal of Computational Physics, Elsevier, 2019, 380, pp.311-333. ⟨10.1016/j.jcp.2018.12.015⟩. ⟨hal-02176969⟩
K. Lawson, K Aggarwal, I. Coffey, K Keenan, M O’mullane, et al.. Population modelling of the He II energy levels in tokamak plasmas: I. Collisional excitation model. Journal of Physics B: Atomic, Molecular and Optical Physics, IOP Publishing, 2019, 52 (4), pp.045001. ⟨10.1088/1361-6455/aaf703⟩. ⟨hal-02177115⟩ Plus de détails...
Helium is widely used as a fuel or minority gas in laboratory fusion experiments, and will be present as ash in DT thermonuclear plasmas. It is therefore essential to have a good understanding of its atomic physics. To this end He II population modelling has been undertaken for the spectroscopic levels arising from shells with principal quantum number n = 1-5. This paper focuses on a collisional excitation model; ionisation and recombination will be considered in a subsequent article. Heavy particle collisional excitation rate coefficients have been generated to supplement the currently-available atomic data for He II, and are presented for proton, deuteron, triton and alpha-particle projectiles. The widely-used criterion for levels within an n shell being populated in proportion to their statistical weights is reassessed with the most recent atomic data, and found not to apply to the He II levels at tokamak densities (10(18)-10(21) m(-3)). Consequences of this and other likely sources of errors are quantified, as is the effect of differing electron and ion temperatures. Line intensity ratios, including the so-called 'branching ratios' and the fine-structure beta(1), beta(2), beta(3), and gamma ratios, are discussed, the latter with regard to their possible use as diagnostics.
K. Lawson, K Aggarwal, I. Coffey, K Keenan, M O’mullane, et al.. Population modelling of the He II energy levels in tokamak plasmas: I. Collisional excitation model. Journal of Physics B: Atomic, Molecular and Optical Physics, IOP Publishing, 2019, 52 (4), pp.045001. ⟨10.1088/1361-6455/aaf703⟩. ⟨hal-02177115⟩
Journal: Journal of Physics B: Atomic, Molecular and Optical Physics
Mohamad Cheayb, Mylène Marin Gallego, Mohand Tazerout, Sébastien Poncet. Modelling and experimental validation of a small-scale trigenerative compressed air energy storage system. Applied Energy, Elsevier, 2019, ⟨10.1016/j.apenergy.2019.01.222⟩. ⟨hal-02384256⟩ Plus de détails...
• A thermodynamic model of a simple trigenerative-CAES is developed. • The model is validated experimentally. • The performances of the simple configuration are assessed. • Technological issues on the trigenerative CAES are highlighted. New advances in compressed air energy storage systems have been recently made especially regarding the use of heat generated from compression. On this basis, the concept of the trigenerative compressed air energy storage (T-CAES) has recently been proposed. Many studies highlighted the feasibility and the benefits of this system to be placed close to the energy demand. The aim of this study is to examine a simple configuration of this system by a coupled experimental/mod-elling approach. This paper presents a detailed thermodynamic model of both the main components and the whole system. An experimental bench is used to validate the model and to investigate the effect of the operating parameters on the system efficiency and the model accuracy. The model predictions are consistent with the experimental measurements during the charge, storage and discharge phases. It has been found that the temperature drop across the pressure regulator should not be ignored and is governed by the Joule-Thomson effect. Besides, it has been observed that the input temperature of the air motor must be accounted for in the assessment of future improved configurations. It was noted that the system efficiency increases significantly by adding the cooling and heating potentials. However, the round trip efficiency remains low at 15.6%. Output values of the model are in good agreement with the experimental results with an error less than 13.2%. The model can be applied as a basis for the performance assessment of prospective configurations and improvements of trigenerative compressed air energy storage.
Mohamad Cheayb, Mylène Marin Gallego, Mohand Tazerout, Sébastien Poncet. Modelling and experimental validation of a small-scale trigenerative compressed air energy storage system. Applied Energy, Elsevier, 2019, ⟨10.1016/j.apenergy.2019.01.222⟩. ⟨hal-02384256⟩
F. Muller, A. Burbeau, B.-J. Gréa, Pierre Sagaut. Minimum enstrophy principle for two-dimensional inviscid flows around obstacles. Physical Review E , American Physical Society (APS), 2019, 99 (2), ⟨10.1103/PhysRevE.99.023105⟩. ⟨hal-02176949⟩ Plus de détails...
Large-scale coherent structures emerging in two-dimensional flows can be predicted from statistical physics inspired methods consisting in minimizing the global enstrophy while conserving the total energy and circulation in the Euler equations. In many situations, solid obstacles inside the domain may also constrain the flow and have to be accounted for via a minimum enstrophy principle. In this work, we detail this extended variational formulation and its numerical resolution. It is shown from applications to complex geometries containing multiple circular obstacles that the number of solutions is enhanced, allowing many possibilities of bifurcations for the large-scale structures. These phase change phenomena can explain the downstream recombinations of the flow in rod-bundle experiments and simulations.
F. Muller, A. Burbeau, B.-J. Gréa, Pierre Sagaut. Minimum enstrophy principle for two-dimensional inviscid flows around obstacles. Physical Review E , American Physical Society (APS), 2019, 99 (2), ⟨10.1103/PhysRevE.99.023105⟩. ⟨hal-02176949⟩