Consistent vortex initialization for the athermal lattice Boltzmann method

A barotropic counterpart of the well-known convected vortex test case is rigorously derived from the Euler equations along with an athermal equation of state. Starting from a given velocity distribution corresponding to an intended flow recirculation, the athermal counterpart of the Euler equations are solved to obtain a consistent density field. The present initialization is assessed on a standard lattice Boltzmann solver based on the D2Q9 lattice. Compared to the usual isentropic initialization, a much lower spurious relaxation toward the targeted solution is observed, which is due to the spatial resolution rather than approximated macroscopic quantities. The amplitude of the spurious waves can be further reduced by including an off-equilibrium part in the initial distribution functions.

Gauthier Wissocq, Jean-François Boussuge, Pierre Sagaut. Consistent vortex initialization for the athermal lattice Boltzmann method. Physical Review E , American Physical Society (APS), 2020, 101 (4), ⟨10.1103/PhysRevE.101.043306⟩. ⟨hal-02892501⟩

Journal: Physical Review E

Date de publication: 01-04-2020


Digital object identifier (doi):

x >
[EFROGG] Rapport d'erreur [_M2P2/]