

Stage de M2 / fin d'études

Titre : Modélisation numérique patient-spécifique des valves aortiques unicommissurales : biomécanique et étude hémodynamique pré/post-opératoire

Laboratoire Mécanique Modélisation et Procédés Propres (M2P2)

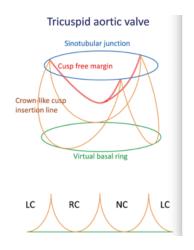
Durée : 6 mois à partir de février 2026, rémunération selon la grille de l'Université Aix-Marseille

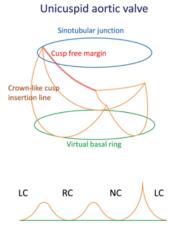
Encadrement du stage : Loïc Macé (<u>loic.mace@univ-amu.fr</u>), Jean-Marc El Arid (<u>Jean-Marc.EL-ARID@etu.univ-amu.fr</u>), Tom Fringand (Tom.Frigand@univ-amu.fr), Julien Favier (Julien.Favier@univ-amu.fr)
Lettre de motivation + CV requis.

Profil recherché

Étudiant(e) en Master 2 ou dernière année d'école d'ingénieur en mécanique, biomécanique ou génie biomédical, présentant :

- Curiosité scientifique, autonomie, créativité et rigueur
- Bon niveau d'anglais technique (lu et écrit)
- Intérêt pour les problématiques cardiovasculaires et biomédicales
- Compétences en programmation Python
- Connaissances en mécanique des fluides numérique et méthode des éléments finis Une soutenance et un rapport seront produits en français ou en anglais.


Contexte scientifique


La sténose aortique unicommissurale est la forme la plus fréquente d'obstruction congénitale de la voie d'éjection du ventricule gauche. Elle résulte d'une valve caractérisée par :

- Une seule commissure fonctionnelle,
- Deux raphés plus ou moins différenciés,
- Une ouverture extrêmement limitée,
- Un mouvement d'"ouverture en clapet" exposant les feuillets à un stress mécanique chronique.

Cette contrainte anormale induit :

- Épaississement tissulaire,
- Excroissances nodulaires,
- Aggravation de la sténose,
- Progression de la fuite aortique dans certaines formes pédiatriques.

La chirurgie (commissurotomie néonatale, bicuspidisation, tricuspidisation, techniques dites *bridge-to-Ross*) vise à restaurer une biomécanique acceptable. Cependant, les résultats hémodynamiques restent souvent suboptimaux, en raison :

- D'un manque de modélisation précise de l'anatomie unicommissurale,
- D'une absence de simulation du cycle valvulaire complet (structure + fluide),
- D'une évaluation insuffisante des gradients (Vmax) et des régurgitations en pré- et post-opératoire.

Un outil de simulation patient-spécifique devient indispensable pour :

- Comprendre les effets des différentes architectures anatomiques,
- Prédire la performance hémodynamique,
- Guider la décision chirurgicale (bicuspidisation, tricuspidisation, Ross, valve mécanoreconstruite).

Objectifs du stage

Développer un modèle patient-spécifique de valve aortique unicommissurale, permettant :

- 1. La reconstruction 3D de l'anatomie à partir d'imagerie (écho/scanner) à l'aide de logiciels et outils existant au laboratoire M2P2.
- 2. La modélisation structurelle des feuillets intégrant leurs propriétés biomécaniques pathologiques à l'aide d'un code éléments finis disponible au M2P2.
- 3. La simulation fluide-structure du cycle systole/diastole utilisant un code d'interaction fluide-structure développé au M2P2
- 4. L'analyse hémodynamique complète des résultats de simulation numérique (gradients transvalvulaires (Vmax), pertes de charge, jet systolique, évaluation de la fuite/insuffisance aortique) et comparaison pré/post-opératoire pour différents types d'interventions reconstructrices.

Références :

<u>A stable and explicit fluid–structure interaction solver based on lattice-Boltzmann and immersed boundary methods</u>. T Fringand, I Cheylan, M Lenoir, L Mace, J Favier. Computer Methods in Applied Mechanics and Engineering 421, 116777, 2024.

Three-dimensional modelling of aortic leaflet coaptation and load-bearing surfaces: in silico design of aortic valve neocuspidization. LG Macé, T Fringand, I Cheylan, L Sabatier, L

Meille, M Lenoir, J Favier. Interdisciplinary Cardiovascular and Thoracic Surgery 39 (1), ivae108, 2024.

Geometry of cusp and root determines aortic valve function. Matsushima S, Karliova I, Gauer S et al. Indian J Thorac Cardiovasc Surg 2020;36(Suppl 1):S64-S70.

Unicuspid aortic valve repair with bicuspidization in the paediatric population. Matsushima S, Heß A, Lämmerzahl JR, Karliova I, Abdul-Khaliq H, Schäfers H-J. Eur J Cardiothorac Surg 2021;59:253–61.