Energy efficiency as an example of cross-discipline collaboration in chemical engineering

This paper summarizes the round-table discussion that was held during the EuropeanCongress of Chemical Engineering (ECCE) in Nice, France, in October 2015 on this topic.The panellists come from different fields of chemical engineering and have thus broughtin different perspectives. The objective was to determine paths for developing innovativeapproaches in view of process optimization.The terminology is a first obstacle that was clarified. Energy efficiency can be envisagedeither by optimizing thermodynamic functions (entropy or exergy), more pragmatically byselecting the adequate unit operation or in a very general vision by considering all decisionvariables (i.e. including economic and political) that may have an impact on the final serviceprovided to society.The second issue relates to improving collaboration among various actors. These may bedefined in terms of type of responsibility (industrials, mostly market-driven, or academic),or in terms of discipline. The role of professional societies as the European Federation forChemical Engineers (EFCE) is stressed as a promotor of collaboration between disciplines.Finally, once willingness for collaboration is identified, the final question is how it can leadto true innovation. The largest innovation potential is often found at the interface betweenfields. Yet, it often requires both an effort to explain the mutual challenges in a didacticmanner, and the development of tools that make it possible to each partner to be efficientin his own field while being aware of the global goal and of the constraints of the others.

Jean-Charles de Hemptinne, Jean-Henry Ferrasse, A. Gorak, Signe Kjelstrup, F. Maréchal, et al.. Energy efficiency as an example of cross-discipline collaboration in chemical engineering. Chemical Engineering Research and Design, 2017, 119, pp. 183-187. ⟨10.1016/j.cherd.2017.01.020⟩. ⟨hal-01519871⟩

Journal: Chemical Engineering Research and Design

Date de publication: 01-01-2017

Auteurs:
  • Jean-Charles de Hemptinne
  • Jean-Henry Ferrasse
  • A. Gorak
  • Signe Kjelstrup
  • F. Maréchal
  • Olivier Baudouin
  • R. Gani

Digital object identifier (doi): http://dx.doi.org/10.1016/j.cherd.2017.01.020


x >